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ABSTRACT 

 

Vitamin A (VA) is an essential fat-soluble nutrient needed by all vertebrates and 

plays a central role in essential physiological functions including normal growth, 

development, immune function, epithelial integrity, reproduction, and vision.  Vitamin A 

deficiency (VAD) is a significant public health problem in more than half of countries 

worldwide.  VAD is a major cause of preventable childhood blindness and also impairs 

immune function, especially affecting the poorest populations in low and middle-income 

countries.  Based on the World Health Organization (WHO) threshold definition for 

biochemical VAD (serum retinol below 0.7 µmol/L), most countries in Sub-Saharan Africa 

and East Asia have over 20% of preschool-age children suffering from VAD.  

Biofortification is the technique of using plant breeding and/or biotechnology to produce 

micronutrient-enhanced staple food crops.  Because most populations in these areas heavily 

rely on plant-based diets, provitamin A biofortification is a promising approach to alleviate 

widespread VAD.   

Sorghum is the fourth most important cereal crop worldwide and in Africa.  

Approximately 300 million of Africa’s most food insecure people who live in the semi-arid 

tropics rely on sorghum as their staple crop.  To alleviate the prevalence of VAD in these 

areas, the Africa Biofortified Sorghum (ABS) initiative was founded to develop β-carotene-

biofortified sorghum through genetic engineering.  Our objective was to quantify the 

bioefficacy of the biofortified sorghum using a Mongolian gerbil model.   

Gerbils were fed a VA-free control diet (45% by wt non-transgenic sorghum flour) 

for 4 wk; 8 animals were then killed at baseline.  The remaining animals were randomly 
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assigned to treatments for 6 wk (n = 11 per group): 1) control diet dosed daily with 

cottonseed oil vehicle; 2) biofortified diet (45% by wt transgenic sorghum flour) (99.6 nmol 

retinol equivalents/d) dosed daily with cottonseed oil vehicle; 3) control diet dosed daily with 

β-carotene (84.9 nmol retinol equivalents/d); 4) control diet dosed daily with VA (85.1 nmol 

retinol equivalents/d).  Liver VA stores in the baseline (1.27 ± 0.29 µmol), β-carotene-dosed 

(1.30 ± 0.26 µmol), and biofortified (1.31 ± 0.23 µmol) groups were not different; liver VA 

stores in the vehicle-dosed control group were lower (0.92 ± 0.22 µmol) (P < 0.01). Liver 

VA stores were highest in the VA-dosed group (2.48 ± 0.23 µmol) (P < 0.0001).  The 

calculated bioconversion efficiency for the β-carotene in the biofortified sorghum (4.5 µg β-

carotene to 1 µg retinol) was similar to that of the β-carotene dose (3.8 µg to 1 µg retinol).  

The β-carotene and the other provitamin A carotenoids in the biofortified sorghum: 1) 

effectively restored liver VA stores in a VA-depleted animal model; 2) had efficacy similar 

to that of a supplemental β-carotene dose in maintaining liver VA stores. 

Accurate quantification of hepatic retinol and retinyl esters is necessary for the 

determination of vitamin A status in animal models.  Our objective for the second study was 

to optimize methods for the extraction and HPLC analysis of hepatic retinol and retinyl 

esters.   

Our results indicated that Method #1 (J Lipid Res 2014;55:1077-86) resulted in 

higher hepatic total vitamin A concentrations (423 ± 72.9 nmol/g) than Method #2 (Methods 

Mol Biol 2010;652:263-75) (36.8 ± 5.35 nmol/g), Method #3 (Anal Methods 2010;2:1320-

1332) (347 ± 26.6 nmol/g), and Method #4 (Food Chem 2014;159:477-85) (288 ± 49.1 

nmol/g) (P < 0.0001).  Of the many factors evaluated within the hepatic VA extraction 

protocol, an adequate concentration of ethanol (at least 50%) in the homogenization media is 



www.manaraa.com

vi 

 

 

necessary for exhaustive extraction.  Ethanol is needed in the homogenization media to 

extract retinoids from liver tissues and then partition them directly to hexane.  Homogenizing 

liver in 100% PBS might facilitate liver tissue binding with water molecules and therefore 

interfere with the above partitioning process.  The initial extraction of VA from the tissue 

into ethanol is a critical step that needs to be facilitated by an adequate duration of vortexing.  

Finally, the selection of the reconstitution solvent is important for optimal chromatography 

and therefore for accurate quantification. 
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CHAPTER 1 

INTRODUCTION  

 

Vitamin A is an essential nutrient for many physiological functions (1).  The 

carotenoids containing the VA structure are called provitamin A carotenoids and have the 

potential to be bio-converted into vitamin A in humans and other vertebrates (2).  Vitamin A 

deficiency (VAD) is a prevalent malnutrition disease affecting the poorest populations in low 

and middle-income countries (3-5).  Based on the World Health Organization (WHO) 

threshold definition for biochemical VAD (serum retinol below 0.7 µmol/L), most countries 

in Sub-Saharan Africa and East Asia have over 20% of preschool-age children and over 10% 

of pregnant women suffering from VAD (6).  VAD accounts for as high as 2% of all deaths in 

children younger than five years in both sub-Saharan Africa and South Asia (7).   

The estimated prevalence of VAD in children ages 6-59 months has declined from 

39% (data from 1991) to 29% (data from 2013) in low and middle-income countries in the 

last decades.  However, this trend of reduction should only be attributed to the significantly 

decreased prevalence of VAD in Oceania, Latin America, the Caribbean region, and East and 

Southeast Asia.  No evidence of a reduction in the estimated prevalence of children with 

VAD can be found in sub-Saharan Africa region from the year of 1991 (estimated prevalence 

45%) to the year of 2003 (estimated prevalence 48%).   

People in sub-Saharan Africa have limited access to the foods that contain high levels 

of VA (e.g. meat, eggs and dairy products) or provitamin A carotenoids (carrot, pumpkin, 

orange-fleshed sweet potato, and green leafy vegetables) (8, 9).  Staple foods (maize, rice, 

sorghum, and wheat) of population susceptible to VAD are typically low in provitamin A (10).  
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Because most populations in these areas heavily rely on plant-based diets, provitamin A 

biofortification is believed as a promising approach to alleviate widespread VAD (8). 

  Provitamin A biofortification approaches (11) have been successfully applied in 

multiple crops such as cassava (12), maize (13), rice (14), and sweet potato (15) by means of 

transgenic and/or conventional breeding.  According to the most updated Food and 

Agricultural Organization (FAO) data, sorghum ranks as the fourth most important cereal crop 

in Africa in terms of production in tonnes (16).  Approximately 300 million of African rely on 

sorghum as their staple diet (17).  However, conventional sorghum lines have nutritional flaws.  

The limitations include low concentrations of provitamin A carotenoids and tocopherols 

(vitamin E), poor iron and zinc bioavailability due to anti-nutrients such as phytate and tannins, 

and low protein digestibility due to the cross-linking of sorghum kafirin proteins through their 

disulfide bonding.  The Africa Biofortified Sorghum (ABS) initiative was therefore founded 

in 2005 to address these nutritional limitaitions through genetic engineering (18).  

 In this study, our objective was to quantify the bioefficacy of the biofortified sorghum 

(ABS 203) using a Mongolian gerbil model because of its similarity with human in 

metabolizing carotenoids.  With the completion of several method development studies, we 

were able to accurately identify and quantify the provitamin A carotenoids in the biofortified 

sorghum.  The bioefficacy (VA equivalence value) of provitamin A carotenoids in the 

biofortified sorghum was then determined.  

In mammals, the liver is the major vitamin A (VA) storage site that contains 50% to 

80% of the body’s total VA (retinol plus retinyl esters) (19).  Accurate quantification of 

hepatic VA is necessary for the determination of VA status in animal models.  There are 

many published hepatic VA extraction methods, and their details can vary considerably from 
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each other.  To optimize the hepatic VA extraction method and understand the rationale 

underlying each extraction step, we compared in rodent livers published non-saponification 

extraction protocols for HPLC analysis of retinol (ROL) and retinyl esters.  We then 

investigated the effects of several key factors in hepatic VA extraction efficiency, including 

the amount of ethanol added before homogenization of the liver tissue and the duration of 

vortexing before adding hexane.  The selection of reconstitution solvent was also 

investigated for optimal chromatography and therefore for accurate quantification.  
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CHAPTER 2 

LITERATURE REVIEW 

 

Physiological Functions of Vitamin A in Humans 

What is vitamin A? 

Vitamin A (VA) is an essential fat-soluble nutrient needed by all vertebrates for 

normal growth, development, immune function, epithelial integrity, reproduction, and vision 

(1-3).  The term VA is used to refer to compounds that possess the biological activity of 

retinol.  Preformed VA (retinol and its esterified form, retinyl esters) and provitamin A 

carotenoids (mostly β-carotene) are the main forms of VA in natural foods.  The major form 

of dietary preformed VA is long-chain fatty acid esters of retinol (i.e., retinyl esters) that can 

be found in animal origin foods such as dairy products, poultry, fish and meat (4).  

Carotenoids are synthesized by numerous plants, fungi and bacteria and thus can be found in 

many vegetables and fruits (5).  Because the VA molecule has an unsubstituted β-ionone ring 

and a conjugated polyene chain with a particular number and positions of methyl groups, the 

carotenoids containing the VA structure are called provitamin A carotenoids and have the 

potential to be bio-converted into vitamin A in humans and other vertebrates (6).  

 

Digestion, absorption, bio-conversion, and metabolism of vitamin A 

Preformed VA is highly bioavailable. Prior to intestinal absorption, retinyl esters 

must be hydrolyzed into free retinol by pancreatic retinyl ester hydrolase (REH) in the 

intestinal lumen (7).  Two mechanisms have been proposed for the uptake of retinol into 

duodenal and jejunal mucosal cells.  Unesterified retinol is known to be absorbed into 
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enterocytes via passive diffusion after being incorporated into mixed micelles (8). However, 

more recently a protein-mediated facilitated diffusion system was also shown to mediate the 

direct absorption of free retinol (9).  Cellular retinol-binding protein II (CRBP II) is one of 

the most abundant proteins in intestinal mucosal cells.  CRBP II is a transporter that is 

uniquely adapted to the intestinal absorption and metabolism of VA (10).  Under postprandial 

conditions, retinol is absorbed rapidly by intestinal cells.  Retinol is then esterified and 

secreted by mucosal cells in the form of retinyl esters.  Under fasting conditions, some 

unesterified retinol is directly secreted from the mucosal cells into the basolateral medium 

(11).  

Among provitamin A carotenoids, β-carotene has the greatest provitamin A activity 

because symmetrical cleavage of β-carotene in the digestive system provides two retinal 

(retinaldehyde) molecules.  In contrast, other provitamin A carotenoids such as α-carotene 

and β-cryptoxanthin provide only one retinal molecule due to the presence of only one β-

ionone ring (12).  Because dietary carotenoids are often embedded in food matrices and 

complexed with proteins and fatty acids, some digestion is required before carotenoids can be 

made available to be absorbed in the small intestine.  After being released from food matrices 

by mechanical and enzymatic disruption in the digestive system, carotenoids are hydrolyzed 

from proteins by pepsin in the stomach and proteolytic enzymes in the duodenum.  The 

hydrolysis of carotenoid esters is catalyzed by various hydrolases and esterases of pancreatic 

origin (13).   

Like VA, early studies indicated that the intestinal absorption of carotenoids occurred 

by passive diffusion.  Free carotenoids were believed to be incorporated into micelles with 

other lipids and absorbed via passive diffusion across the brush border membrane of 
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enterocytes.  However, there is recent evidence that the absorption of carotenoids is saturable 

and protein facilitated (14, 15).  The facilitating receptor for the uptake of carotenoids was 

identified as scavenger receptor class B type 1 (SR-B1), the mammalian counterpart of 

Drosophila NinaD (14).  The bio-conversion of provitamin A carotenoids to VA takes place 

in the small intestinal mucosal cells.  There are two mechanisms that have been proposed for 

the cleavage of carotenoids.  The major pathway is the central cleavage of provitamin A 

carotenoids (especially β-carotene) to retinal (VA), which is catalyzed by β-carotene 15,15'-

oxygenase 1 (BCO1) (16, 17).  In contrast, β-carotene 9',10'-oxygenase 2 (BCO2) catalyzes 

the eccentric cleavage of carotenoids, yielding long-chain apocarotenoids (18, 19).  

Compared with BCO1 that is primarily involved in provitamin A carotenoid bio-conversion, 

BCO2 also metabolizes non-provitamin A xanthophyll carotenoids such as lutein and 

zeaxanthin.  A negative feedback system controls the expression of SR-B1 and BCO1 

involving the gut-specific homeodomain transcription factor (ISX) (20). This feedback 

system tightly regulates the absorption and bio-conversion of dietary VA for animals with 

varying VA status.  The retinol from dietary performed VA and provitamin A carotenoids is 

esterified and undergoes the same fate in terms of metabolism.  

Newly formed retinyl esters leave the intestine in chylomicrons that are large 

lipoproteins incorporating triacylglycerol, phospholipids, cholesterol esters, and other fat 

soluble components.  A portion of un-oxidized carotenoids may also leave the intestine intact 

as a component in chylomicrons or large very low density lipoproteins (VLDLA) (21-23). 

After chylomicrons enter the lymph and then the venous circulation, the triacylglycerols are 

partially hydrolyzed on the surface of peripheral tissue cells containing lipoprotein lipase. 

The remnant particles (chylomicron remnants) retaining almost all retinyl esters and a 
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substantial proportion of the intact carotenoids are taken up by the liver via the hepatic 

receptors for apolipoprotein E or B/E (24-26).    

The liver plays an essential role in VA storage, metabolism and homeostasis (11, 27).  

The retinyl esters are rapidly hydrolyzed into retinol after chylomicron remnants are taken up 

by the liver.  After binding with liver cellular retinol binding protein type 1 (CRBP-1), a 

portion of retinol is re-esterified into retinyl esters by lecithin retinol acyltransferase (LRAT) 

for further storage in hepatic stellate cells.  Unesterified retinol can also undergo secretion by 

binding to retinol-binding protein (RBP) to form a complex named holo-RBP.  After 

reaching the liver, carotenoids undergo three fates: cleavage into retinoids or apocarotenoids, 

incorporation into lipoproteins and secretion into the bloodstream, or storage in the liver. 

In the venous circulatory system, the retinol in holo-RBP is transported to organs 

throughout the body and taken up by cells that possess the transmembrane protein Stra6 (a 

cellular RBP receptor) (28-30).  Plasma retinol concentrations remain constant even though 

liver VA concentrations may vary within a wide range, from approximately 20 ug/g liver to 

500 ug/g liver.  Plasma retinol only decreases when liver VA stores are nearly depleted (31).  

Carotenoids are transported in the blood as part ofvery-low-density lipoproteins (VLDLs), 

low-density lipoproteins (LDLs), and high-density lipoproteins (HDLs).  Uptake of 

carotenoids into target tissues is mediated by the cellular uptake of lipoproteins through 

apolipoprotein receptors on the surface of the cells.  In addition to the liver, carotenoids can 

be stored in adipose tissues and are found in other specific tissues such as the retina of the 

eye (32).        

Retinoic acid is the active hormonal form of VA that is oxidized from retinal by 

retinal dehydrogenase.  After being delivered by cellular retinoic acid-binding proteins 
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(CRABPs) to the cell nucleus, retinoic acid binds to the retinoic acid receptor-retinoid X 

receptor (RAR-RXR) heterodimer on DNA to regulate gene expression (33, 34).    

 

Physiological functions of vitamin A 

VA is one of the fat soluble nutrients earliest to be discovered.  Two distinct roles of 

VA have been convincingly shown, as: 11-cis retinal binds to opsin protein in the retina for 

the photo-transduction mediation needed for normal vision; and all-trans retinoic acid or 9-

cis retinoic acid activates the ligand-dependent transcription factors RAR and RXR to 

regulate gene transcription and cell differentiation (35, 36). 

 

Vision  

VA (11-cis retinal) is needed to bind opsin and form rhodopsin in rod photoreceptor 

cells in the retina (37, 38).  Within the photoreceptor rod cells, rhodopsin is necessary for 

detecting small amounts of light in a dark environment.  Rhodopsin is cleaved, opsin is 

released, and 11-cis retinal is isomerized to all-trans retinal when a photon of light hits the 

retina.  In response to the conformational change (photoisomerization), a complex signal 

transduction cascade occurs, and an electrical signal is generated and then sent to the brain 

for the sense of vision (39).     

 

Immune function  

A positive relationship between VA deficiency (VAD) and increased susceptibility to 

natural infections has been established in animals and humans (40).  As retinoic acid plays 

important roles in gene expression, many aspects of immunity can be influenced by VA 
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status.  Cell differentiation and maturation of immune cells such as T/B lymphocytes, 

neutrophils, and macrophages need to be triggered and regulated by retinoic acid (41, 42).  

Also, the expression and production of cytokines and immunoglobulins require the 

participation of retinoic acid.  Both innate and mucosal immunity will be impaired if the VA 

intake is inadequate (43).   

 

Growth and development  

VA plays a critical role in mammalian growth and embryonic development (7, 44).  

When the VA stores of animals are exhausted by consuming VA free diets, cessation of 

growth can be observed and growth resumes after subsequent VA supplementation (45-47).  

Vitamin A deficiency (VAD) in critical periods of development also leads to organ (heart, 

eye, lung, gonad, ear, and other organs) and limb malformations (37, 48). One reason is that 

retinoic acid regulates expression of genes related to the expression of growth hormones (7).  

Epidemiological studies suggest that VAD rate is positively related to stunting in children (P 

< 0.001) (49).  Moreover, multiple clinical trials separately indicate that linear growth in 

children with VAD in Southeast Asia can be improved by VA supplementation (50-52).   

 

Vitamin A Deficiency in Africa 

Dietary requirements for vitamin A 

The U.S. Academy of Medicine has adopted retinol activity equivalents (RAE) as the 

measurement unit for recommended VA intakes (53).  The RAE is used to account for the 

differences in the bioactivities of various preformed VA and provitamin A carotenoids and 

for the different dietary matrices.  The Recommended Dietary Allowance (RDA) for VA is 
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the average daily dietary intake that is sufficient to meet the nutritional requirement for 

almost all (97-98%) healthy individuals.  The RDAs for VA for adult men, adult women, 

adult pregnant women, adult lactating women, children ages 1-3 y, and children ages 4-8 y 

are 900 μg RAE, 700 μg RAE, 770 μg RAE, 1300 μg RAE, 300 μg RAE, and 400 μg RAE, 

respectively.   

The clinical signs of inadequate VA intake have been well studied.  Multiple 

biomarkers have been used to determine the sufficiency status of VA.  Xerophthalmia caused 

by severe VAD is an eye disease with destructive dryness of the conjunctival epithelium (54, 

55).  Night blindness results from marginal VAD when the serum retinol concentration is 

0.35 to 0.70 μmol/L and the VA pool in the rod cells of the retina is inadequate.  Due to the 

effect of VA on immune function, VAD is also associated with increased risk for morbidity 

and mortality from diarrhea and measles (56).  The concentration of serum retinol is tightly 

controlled and, therefore, inaccurate to directly reflect the liver VA stores (VA status) of an 

individual.  However, when liver VA concentration falls below a critical cutoff (20 μg/g 

liver), serum retinol concentration declines (57).  Because of its feasibility of measurement, 

serum retinol concentration is the most common indicator used to determine the prevalence 

of VAD in large populations.  

Preformed VA and provitamin A carotenoids are major VA sources for human 

populations.  In developed countries, approximately 66% to 80% of dietary VA intake is 

contributed by preformed VA from animal-derived foods such as butter, cheese, and egg 

(Western dietary patterns), and 20% to 34% of VA intake is from provitamin A carotenoids.  

In contrast, for most people living in developing countries, only about 12% to 22% of dietary 

VA comes from preformed VA and 78% to 88% comes from provitamin A carotenoids.  The 
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majority of the populations in developing countries have dietary patterns that are high in 

plants (staple grains and vegetables) and low in meats and dairy products.   

 

Prevalence of vitamin A deficiency in Africa 

As one of the most widespread micronutrient malnutrition diseases worldwide, VAD 

is a major cause of preventable childhood blindness and also impairs immune function, 

especially affecting the poorest populations in low and middle-income countries (40, 52, 58).  

VAD accounts for as high as 2.0% of all deaths in children younger than five years in both 

sub-Saharan Africa and South Asia (59).   

Based on the World Health Organization (WHO) cutoff definition for biochemical 

VAD (serum retinol below 0.7 µmol/L), most countries in sub-Saharan Africa have over 20% 

of preschool-age children suffering from VAD (56).  In the past decades, the estimated 

prevalence of VAD in children ages 6-59 months has decreased from 39% (data from 1991) 

to 29% (data from 2013) in low and middle-income countries due to reasons such as VA 

supplementation programs and improvement of overall nutrition (59).  However, this decline 

should only be attributed to the significantly decreased prevalence of VAD in East and 

Southeast Asia, Oceania, Latin America, and the Caribbean.  No evidence of a reduction in 

the estimated prevalence of children with VAD was observed in sub-Saharan Africa between 

1991 (estimated prevalence 45%) and 2003 (estimated prevalence 48%).   

Globally, about 19.1 million pregnant women have low serum retinol concentration 

(< 0.7 μmol/L), and approximately half of them suffer from moderate to severe VAD that can 

lead to gestational night blindness.  Nearly all African countries have over 10% of pregnant 

women in biochemical VAD (56).  VAD women are likely to give birth to children who are 
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at high risk for VAD (60).  Semba et al. (61) found a three-fold higher likelihood (P < 0.03) 

of mortality in infants who were born to women with low serum retinol concentrations (< 

0.32 μmol/L).  A cross-sectional epidemiological study also showed a positive relationship 

between maternal VAD and increased risk of maternal anemia and preterm delivery in India 

(62).  In addition, gestational night blindness was positively associated with higher risk of 

early mortality (death before 6 months of life) in Nepalese infants (63).  If these results can 

be extrapolated to African, the control of VAD in child bearing-age women is of importance 

to the population health of both women and children in Africa countries. 

  

Vitamin A Biofortification of Sorghum 

Strategies to alleviate vitamin A deficiency 

VA-rich foods are not always accessible to people.  Various strategies have been 

adopted by different countries and organizations to alleviate widespread VAD and its impacts 

on public health.  Because VAD often occurs in clusters, VA supplementation, and food VA 

fortification are the most common strategies that are pursued by low and middle-income 

countries.  

 

Vitamin A supplementation  

VA supplementation is proven to be a successful and efficient approach to alleviate 

VAD.  Millennium Development Goal 4 (MDG 4) focused on improving child survival by 

reducing by two-thirds the mortality rate among children by 2015 (64).  VA supplementation 

was an important part of MDG 4 and is recognized as one of the most cost-effective 

interventions for improving child survival (65).  Generally, a VA dose in the form of retinyl 
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esters is first dissolved in oil and then contained in soft gelatin capsules.  Infants 6 to 11 

month of age are given a single VA supplement in a dose of 30 mg RAE.  Children 12 to 59 

months of age are given a VA supplement in a dose of 60 mg RAE every 4-6 months (66).  A 

number of clinical trials reported a significant reduction in mortality in children following 

VA supplementation (67, 68).  Globally, approximately 75% of children aged 6 to 59 months 

received two doses of VA supplement in 2011, resulting in protection against VAD (69).  

Unfortunately, VA supplementation is only comprehensively successful in urban areas or 

developed countries because of the effectiveness of the project execution.  Many children in 

remote areas in low income countries are not able to be reached by supplementation 

programs.  Besides the cost of the VA capsules, millions of dollars are needed to operate the 

programs and distribute the capsules every year.  Therefore, VA supplementation programs 

are often implemented by non-profit organizations in many African countries and are not 

economically sustainable because the funding is not always guaranteed (65). 

 

Vitamin A fortification  

Adequate intake of foods containing enough of a specific nutrient is fundamental to 

control nutrient deficiency on a sustainable basis.  Food fortification has many advantages 

over other approaches: it is socially acceptable; it has low costs of operation; it only requires 

minimal changes in eating habits; and it is economically sustainable because it shares the 

same logistics system with traditional foods (70).  Food fortification is a major contributor to 

nutrient intakes for both developed and developing countries (71, 72).   

People in “high-risk” regions for VAD have limited access to the foods containing 

high levels of preformed VA (e.g. meat, eggs and dairy products) or provitamin A 
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carotenoids (carrots, pumpkin, sweet potatoes, and green leafy vegetables) (73, 74).  Staple 

foods (maize, rice, sorghum, and wheat) of populations susceptible to VAD are typically low 

in provitamin A (75).  Margarine has long been successfully fortified with VA in Western 

countries (76, 77).  In an intervention study in the Philippines, VA-fortified margarine 

substantially decreased the prevalence of low serum retinol in preschool age children from 

25.7% to 10.1% after 6 months of consumption (78).  Sugar is a popular vehicle for VA 

fortification (79).  VA compound (retinyl palmitate) is bound to the sugar crystal as a gum-

based beadlet with a layer of vegetable oil to avoid segregation (80).  In Central America 

countries such as Guatemala, VA has been added to sugar since 1974 (81).  Cooking oil is 

another ideal matrix for VA fortification because VA is fat-soluble. In Brazil, VA fortified 

cooking oil significantly improved plasma retinol concentrations and liver VA stores (82). 

Provitamin A biofortification is a relatively new concept.  Conventional cross-

breeding techniques were used to transfer micronutrient density traits into high-yielding 

competitive genetic backgrounds (83).  For example, while typical maize has β-carotene 

concentrations of only 0.07 to 1.4 μg/g (84), some varieties of biofortified maize have about 

10 μg β-carotene per g (85).  Human and animal bioefficacy studies indicate that biofortified 

maize is a good source of vitamin A with high vitamin A bioavailability (74, 86, 87).  

“Yellow” cassava containing high concentrations of β-carotene has also been produced 

through conventional plant breeding.  Our laboratory and another research group have shown 

high β-carotene bioefficacy values from biofortified cassava (88, 89).  

Transgenic biofortification is also a promising approach to enhance the provitamin A 

value of traditional staple foods.  Unlike conventional breeding, genetic engineering can 

increase the micronutrient concentration in the crop that does not naturally contain a 
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micronutrient.  The transgenic approach also facilitates the incorporation of multiple genetic 

systems from different organisms (animals, plants, and microorganisms) to simultaneously 

increase micronutrient concentrations, decrease anti-nutrient concentrations, and enhance 

promotors of bioavailability (90). 

Among several transgenic biofortification approaches for staple crops, the “Golden 

Rice” project is perhaps the most famous (91).  The maize gene encoding phytoene synthase 

(PSY) and the Erwinia uredovora gene encoding carotene desaturases (CRTI) were expressed 

in rice endosperm through Agrobacterium tumefacien-mediated transformation.  The 

advanced version of Golden Rice provides up to 37 μg/g total carotenoids (of which 84% is 

β-carotene) (92, 93).  A clinical trial (94) suggested that the β-carotene in Golden Rice has 

high bioefficacy (3.8 μg β-carotene in the rice is converted to 1 μg retinol) in U.S. adults.  A 

single 100 g (uncooked) portion of Golden Rice can provide about 500-800 µg retinol, which 

fulfills 55-70% of the Recommended Dietary Allowance (RDA) for men and women.  

Queensland University of Technology has developed transgenic banana cultivars with 

enhanced provitamin A carotenoid content by expressing the Asupina banana PSY (the gene 

encoding phytoene synthase) gene in Cavendish and cooking bananas (95, 96).  Moreover, 

the Africa Biofortified Sorghum (ABS) initiative was founded to produce transgenic 

sorghum with a final trait stack for enhanced provitamin A concentration, increased iron and 

zinc bioavailability, and improved protein digestibility (97).  

 

Sorghum in Africa 

Sorghum (bicolor L. Moench) is an ancient grain that is also known as guinea corn.  

The oldest cultivation record was traced to as early as 3000 B.C. in Egypt (98).  Sorghum is a 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150518/
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member of the grass family graminea and can be categorized using different criteria.  Grain 

sorghum, dual purpose sorghum, fodder sorghum, forage sorghum, and sweet stalk sorghum 

are classified based on their height, grain productivity, and sugar amount in the stem (99). 

Globally, sorghum is the dietary staple for more than 500 million people in over 90 countries 

of the semi-arid tropics (100). Sorghum is an important dietary staple for the population of 

Africa, providing an estimated 145 kcal and 4.3 g protein per capita per day (101).  

According to 2013 Food and Agricultural Organization (FAO) data, sorghum is the fourth 

most important cereal crop worldwide and in Africa in terms of production in tonnes (102).  

Approximately 300 million of Africa’s most food insecure people who live in the semi-arid 

tropics rely on sorghum as their staple crop (103).   

Sorghum has high photosynthetic efficiency, high growth rates, low photorespiration 

rate, low water loss rate, and unusual leaf structure because it is a C4 plant.  These plants use 

the C4 carbon fixation pathway that involves temporary incorporation of CO2 into a three-

carbon product, 3-phosphoglycerate.  Sorghum therefore matures rapidly and may provide 

more than one harvest per year (104).  Structurally, sorghum is very similar to maize that has 

hard and floury endosperm and large fat-rich germ without true hull or husk (105).  Thus it 

can be processed using similar dry and wet milling technologies as maize (106).  Sorghum is 

often cultivated in drought-prone environments and genetically adapted to hot and dry 

agricultural ecologies where it is difficult for other food grains to grow.  Because of its 

tolerance to drought, water logging, saline-alkali infertile soils, and high temperature, 

sorghum is often referred to as the “camel of the plant kingdom” (106).   

Many Africa traditional recipes describe the processing of sorghum based food.  

Sorghum tortillas are prepared by processing sorghum in alkali (calcium hydroxide), steeping 
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and washing the processed sorghum (nixtamal), and cooking grounded nixtamal on a hot 

surface to form a tortilla by the nixtamalization process.  Couscous is a major sorghum food 

staple in North and West Africa; it is a steamed, agglomerated food.  In Kenya, Uganda and 

Tanzania, stiff sorghum porridge (ugali) can be made by boiling sorghum slurry.  Sorghum 

ogi, one of the most important weaning foods in Nigeria and parts of Ghana, is made from 

fermented porridge.  In Africa, bread and cookies are often made from a grain flour 

composite containing wheat, sorghum, and millet.  Via hydrothermal processing (flaking, 

puffing, extrusion, and micronizing), various sorghum snack products with high quality and 

good taste can be produced (107, 108).  Because of the versatile utilization of sorghum as a 

staple food ingredient and many merits of growing sorghum as a grain, sorghum is of high 

potential for enhancing Africa regional development and improving food security.   

 

Provitamin A biofortification of sorghum 

Despite the many advantages of growing and consuming sorghum for the African 

people, conventional sorghum lines have nutritional flaws.  The limitations include low 

concentrations of provitamin A carotenoids and tocopherols (vitamin E), poor iron and zinc 

bioavailability due to anti-nutrients such as phytate and tannins, and low protein digestibility 

due to the cross-linking of sorghum kafirin proteins through their disulfide bonding (109, 

110).  The Africa Biofortified Sorghum (ABS) initiative was therefore founded to address 

these nutritional constraints through genetic engineering (110).  This collaborative project 

was supported by the Bill and Melinda Gates Foundation and the Howard G. Buffet 

Foundation through the Danforth Center with in-kind and monetary support from DuPont 

Pioneer. 
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As one of the products of the ABS initiative, transgenic β-carotene-biofortified 

sorghum (ABS 203) was produced by Agrobacterium-mediated transformation (111, 112).  

To improve the biosynthesis of β-carotene, the biofortified sorghum contains transgenes 

DXS (deoxyxylulose 5-phosphate synthase) from Arabidopsis, PSY-1 (phytoene synthase) 

from maize, and CRT-I (carotene desaturase) from Erwinia uredovora with PMI 

(phosphomannose isomerase) from Escherichia coli as the transformation selection marker. 

As an objective of the Grand Challenges in Global Health grant, HGGT (homogentisate 

geranylgeranyl transferase) gene from barley was also inserted and expressed (97), resulting 

in improved vitamin E synthesis to mitigate β-carotene oxidative degradation during storage. 

Hemizygous ABS 203 was previously shown to have increased concentrations of provitamin 

A carotenoids (3.1-10 μg/g dry weight), compared with non-transgenic control sorghum (1.0-

1.3 μg/g dry weight) (97).  

One of the goals of our study is to accurately identify and quantify the carotenoid 

profile of ABS 203 sorghum.  The differences between the ABS 203 event used in our study 

and the Hemi203 sorghum used in the study by Lipkie et al. (97) include: 1) our sorghum 

was homozygous in the T2 generation instead of hemizygous in the T1 generation; and 2) our 

sorghum was grown and harvested in the field instead of the greenhouse.   

 

Vitamin A Equivalence of Foods 

Bioavailability of provitamin A carotenoids 

In the digestive system, the fates of ingested provitamin A carotenoids can be 

classified into 3 categories: 1) absorbed by enterocytes and then cleaved to retinal and 

reduced to retinol; 2) absorbed by enterocytes and then incorporated directly into 



www.manaraa.com

20 

 

chylomicrons with other fat-soluble nutrients for circulation through the lymphatic system 

into the bloodstream; 3) excreted as unabsorbed nutrients.  Knowledge of the percentage of 

provitamin A carotenoids 

dedicated to each fate is crucial 

in evaluating the efficacy and 

quality of provitamin A 

biofortified crops (73).  

Bioavailability is a general term 

for describing the fraction of the 

provitamin A carotenoid that is 

accessible for utilization in 

physiological functions, 

metabolism, and storage (113).  

The process of converting 

provitamin A carotenoids to retinol (VA) for utilization and the related terms in 

bioavailability studies were described as Figure 1 that is modified from (114).  In the context 

of investigating the bioavailability of provitamin A carotenoids, it is important to define the 

terms “bioaccessibility”, “bioavailability”, “bioconversion”, and “bioefficacy” (115).  

Bioaccessibility is defined as the fraction of carotenoids released from the food matrix and 

accessible for absorption.  Simulated digestion and dialyzability trials are often used to 

determine in vitro carotenoid bioaccessibility (116).  Bioavailability is defined as the fraction 

of carotenoid that is absorbed and available for utilization.  Bioconversion is a specific term 

for provitamin A carotenoid bioavailability studies and defined as the fraction of absorbed 
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provitamin A carotenoids that is converted to VA.  Bioefficacy combines absorption and 

bioconversion and is defined as the fraction of ingested dietary provitamin A carotenoids that 

are absorbed and converted to active retinol.  Bioefficacy of β-carotene in a certain matrix is 

often assessed by measuring the retinyl ester response after a single β-carotene ingestion or 

estimating total body VA stores after a feeding period in either a human or animal study 

(117, 118).  In humans, total body VA stores can be estimated using the stable isotope (e.g. 

deuterated retinol) dilution assay technique (119).  In animal studies, body VA stores are 

estimated by directly quantifying liver VA (retinol and retinyl esters) concentration as the 

liver is the primary site for body VA storage (120, 121).   

Typical animal models such as the mouse and rat are not suitable for carotenoid 

absorption studies because of the high efficiency of cleaving provitamin A carotenoids in the 

intestine of these species (122-124).  Ferrets, preruminant calves, and nonhuman primates 

have been used as alternative models for carotenoid absorption studies (125-129).  However, 

they have individual limitations and are not widely used in recent years (130, 131).  Although 

none of the animal models completely mimics carotenoid metabolism in humans, gerbils 

were adapted in recent studies due to the following reasons.  Like humans, gerbils absorb β-

carotene intact even when ingested in only physiological amounts and then accumulate β-

carotene in both serum and tissues (132).  Gerbils convert the ingested β-carotene to vitamin 

A (VA) with similar efficiency to humans (133, 134).  Although human dose-response and 

stable isotope labelling methods are preferred to establish the VA equivalence value for the 

provitamin A carotenoids in crops, a gerbil model provides greater experimental control and 

allows the direct quantification of liver VA to determine the true bioefficacy value (130, 135) 

in a more efficient and less expensive way.  In addition, to ensure better-designed clinical 
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studies, preliminary animal studies were recommended in micronutrient supplementation 

studies (136).  

 

Factors that affect the bioavailability of carotenoids 

The bioavailability of carotenoids within different matrices is highly variable.  

Bioavailability can be enhanced or inhibited by factors from the host, food components, food 

processing method, and carotenoid characteristics.  de Pee and West (137) reviewed the 

factors that influence carotenoid bioavailability and summarized them as the mnemonic 

SLAMENGHI: Species of carotenoids, molecular Linkage, Amount of carotenoids consumed 

in a meal, Matrix in which the carotenoid is incorporated, Effectors of absorption and 

bioconversion, Nutrient status of the host, Genetic factors, Host-related factors, and 

mathematical Interactions. 

Bioavailability of provitamin A carotenoids is crucial for biofortification projects as it 

reflects the efficiency and potential of the biofortified crop in providing VA to the target 

population.  Food matrix greatly affects the bioavailability of carotenoids.  Compared with 

the carotenoids from chloroplasts in green-leafy vegetables, the carotenoids in endosperm 

amyloplasts (starch-storing plastids) of grains were more easily released in the human 

digestive system (138, 139), resulting in a comparatively good VA equivalence value.  

Generally, food processing and preparation methods can be used to enhance the 

bioavailability of provitamin A carotenoids because the food matrices are softened and the 

anti-nutrients are diminished during processing (140).  Hotz and Gibson (141) reviewed the 

effects of thermal processing, mechanical processing, soaking, fermentation, and 
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germination/malting on enhancing the bioavailability of micronutrients, mainly by softening 

the food matrices in plant-based diet. 

Of the many factors that are mentioned above, dietary fat is one of the most important 

food components that influences the bioavailability of carotenoids.  This is because fat intake 

is able to stimulate the secretion of bile and pancreatic enzymes for micelle formation.  As 

mentioned above, micelles play an important role in fat-soluble nutrient absorption including 

carotenoids and VA.  Our laboratory observed a greater absorption of carotenoids when 

salads were consumed with full-fat than with reduced-fat salad dressing (142).  No 

absorption of carotenoids was observed when salads were consumed with fat-free salad 

dressing in the same study.  The type of fat may also affect the absorption efficiency of 

carotenoids.  Compared to a meal rich in sunflower oil, ingestion of β-carotene with a meal 

rich in beef tallow resulted in a higher appearance of β-carotene in triacylglycerol-rich 

lipoproteins from postprandial plasma (21). 

 

Vitamin A equivalence of provitamin A carotenoids in foods 

The VA equivalence of β-carotene is often used to quantify bioefficacy and typically 

defined as the amount of ingested β-carotene needed to provide vitamin A activity equivalent 

to 1 μg of retinol.  The low β-carotene bioavailability in conventional plant sources is a major 

determinant of its VA equivalence.  When a non-negligible amount of other provitamin A 

carotenoids (e.g. α-carotene, β-cryptoxanthin, β-zeacarotene) are detected in the food matrix 

in a bioefficacy study, they should be mathematically transferred and expressed as β-carotene 

equivalents to calculate VA equivalence (143).  
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Two sets of recommended VA equivalence values for β-carotene were established 

and used.  According to the 1967 and 1988 recommendations of FAO/WHO (144), the VA 

equivalence of β-carotene was estimated to be 3.3:1 for an oil matrix, 6:1 for a mixed diet 

and 12:1 for other provitamin A carotenoids.  The term “retinol activity equivalents (RAE)” 

was developed by the U.S. Institute of Medicine (IOM) and used to quantify VA equivalence 

(53).  In the context of provitamin A carotenoids derived primarily from mixed vegetable 

sources in the U.S. diet, RAE values were estimated to be 12:1 by weight for β-carotene and 

24:1 by weight for other provitamin A carotenoids.  When ingested in low amounts (< 2 mg), 

2 µg β-carotene in oil is equivalent to 1 µg retinol (RAE value, 2:1) and 1 µg retinol in oil 

matrix is equivalent to 1 µg retinol (RAE value, 1:1) in the human body.  The lowest VA 

equivalence value indicates the form of vitamin A that has the highest bioefficacy. 

In addition to accurate identification and quantification of the provitamin A 

carotenoids in β-carotene-biofortified transgenic sorghum (ABS 203), our contribution to the 

ABS Initiative is to determine the bioefficacy of the β-carotene and the other provitamin A 

carotenoids in the biofortified sorghum using a gerbil model.  An accurate estimation of the 

VA equivalence for the provitamin A carotenoids in the biofortified sorghum is of 

importance for the future development of the biofortified crop. 

In a gerbil model, we expected a somewhat greater VA equivalence value for β-

carotene dissolved in oil than that established by the U.S. Institute of Medicine (2:1 by 

weight) for human subjects.  This is because prior gerbil studies showed greater VA 

equivalence values for β-carotene dissolved in oil, ranging from 2.4:1 by weight to 4.6:1 by 

weight (74, 145-147).  The above varying values reflect the different experimental designs 
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(e.g. β-carotene dose amount, animals’ age, and the length of treatment period) across the 

studies.  

The VA equivalence value for biofortified maize ranged from 3.2:1 by weight in 

healthy Zimbabwean men and 6.5:1 by weight in healthy U.S. women to 10.4:1 by weight in 

Zambian children, many of whom had marginal VA deficiency (86, 87, 148).  In gerbil 

studies of biofortified maize, VA equivalence value ranged from 2.1:1 by weight to 11.8:1 by 

weight (74, 145, 146, 149).  Because both sorghum and maize are members of the grass 

family, Poaceae, with similar structure (hard and floury endosperm, large fat-rich germ, and 

no true hulls) (104), it is reasonable to expect similar VA values between them.  For Golden 

Rice that is also a transgenic β-carotene-biofortified grain with a starchy matrix, the VA 

equivalence values were estimated at 2.3:1 by weight for Chinese children and 3.8:1 by 

weight for U.S. adults (94, 150).  When feeding β-carotene-biofortified cassava to humans, 

the VA equivalence values of β-carotene were estimated at 2.8:1 (88), 4.5:1, and 4.2:1 (151) 

in a low-fat, moderate-fat meal and high-fat meal, respectively.  In a gerbil study, the VA 

equivalence of β-carotene was determined as 3.7:1 for β-carotene-biofortified cassava (147).  

As mentioned above, the provitamin A carotenoids in crops with starchy matrices have VA 

equivalence values higher than the provitamin A carotenoids in green leafy vegetables.  

Therefore, we expect a VA equivalence value better (lower) than 12:1 for the provitamin A 

carotenoids in the ABS 203 β-carotene-biofortified sorghum.  

 

Quantitative Analysis of Vitamin A 

VA and its derivatives play a central role in essential physiological functions 

including normal growth, development, immune function, epithelial integrity, reproduction, 
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and visual system.  The assessment of endogenous VA levels in serum and tissues are crucial 

to elucidate the mechanisms of digestion, absorption, transportation, storage, excretion, 

metabolism, and biological functions of both VA and provitamin A carotenoids.  The 

concentration of serum retinol is homeostatically controlled and, therefore, inaccurate to 

directly determine VA status.  However, the measurement of serum retinol in a large 

population is an important tool for analyzing the VAD prevalence in a region (59).  Liver is 

the primary site for body VA storage, and hepatic VA concentration is considered as the 

“gold standard” for determining body VA status (152).  Accurate quantification of hepatic 

retinol and retinyl esters is a necessary step in VA assessment in animal models.  High-

performance liquid chromatography (HPLC) is proven to be an efficient, reliable, and well-

established tool for VA separation, identification, and quantification (153, 154). 

Previous studies demonstrated the need to be meticulous during the analysis of 

retinoids.  The polyene chain of retinoids is rich in electrons and makes retinoids sensitive to 

low wavelength light (< 500 nm), trace metals, organic acids, heat, and oxygen.  If retinoids 

are directly exposed to daylight during extraction for a period of time, isomerization occurs 

(155-157).    

There are many published extraction methods, and their details can vary considerably 

from each other.  Careful considerations (158) must be taken to evaluate each step of the 

procedures, from the selection of the media for liver homogenization to the form in which the 

sample is to be injected into the HPLC system.   
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Quantitative analysis of serum vitamin A (retinol) 

In most physiological states except the postprandial state, retinol is the primary form 

of VA in the serum (159).  The determination of serum retinol is relatively straightforward.  

As a classic method, serum samples are mixed with a portion of alcohol for protein 

precipitation.  The internal standard (e.g. retinyl acetate) and antioxidant butylated 

hydroxytoluene are also added to ensure the quality of the analytical work.  Hexane is often 

added multiple times as the extraction solvent.  After centrifuging for phase separation, the 

organic phases of the extraction system are pooled, evaporated, and reconstituted in organic 

solvents compatible with the HPLC system for the final identification and quantification.    

 

Quantitative analysis of hepatic vitamin A (retinol and retinyl esters) 

Hepatic VA extraction can be more complex because of many interfering components 

in the sample matrix including fat, membrane proteins, enzymes, phospholipids, and other 

fat-soluble nutrients (158, 160).  These factors may prevent hepatic VA from being 

completely extracted by organic solvents.  Appropriate sample pre-treatments can effectively 

control the errors from extraction procedures.   

 

Procedures before extraction   

Similar to serum VA determination, a typical procedure for hepatic retinoid extraction 

is the homogenization of liver in water-based buffer followed by precipitation of proteins by 

adding alcohol (161-163).  However, several protocols suggested to avoid water from being 

present in the extraction system (164, 165).  A sample lyophilization pre-treatment was 

therefore conducted.  Because retinoids are partially soluble in water, it is possible that a 
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portion of retinoids is trapped in the aqueous phase during later hexane extraction (166).  

Homogenization can also be directly conducted in alcohol (167).  A proportionally high 

volume of alcohol is needed to ensure that the liver sample can be evenly homogenized.  

Saponification (treating samples with alkali and subsequent water washing) before hexane 

extraction was recommended in some VA analytical protocols to convert all retinyl esters to 

retinol for further analysis (168, 169).  However, this step might be unnecessary and a source 

of errors (water washing step may remove some water-soluble retinoids) (170, 171). Injecting 

residual proteins into the HPLC leads to high system back-pressures and column 

deterioration (158).  Therefore, when homogenizing liver in the water-based buffer, alcohol 

is still added after homogenization as a water miscible organic solvent to precipitate proteins 

from the liver sample (161, 163).  When an adequate amount of alcohol is present in the 

homogenization media, an extra protein precipitation step is not necessary (172).  

 

Solvent extraction   

After homogenization and protein precipitation, a brief vigorous shaking (162) or a 

long incubation (167) are needed before solvent extraction.  However, this step was either 

omitted (173), short (159) or not specified (172) in many hepatic VA extraction protocols.  A 

classic method of extracting retinoids is to add water-immiscible organic solvent to the 

system, and hexane was found to be one of the most efficient solvents for the extraction of 

VA (174).  After another vigorous shaking step, the aqueous phase and the organic phase is 

separated by centrifugation.  The extraction procedure is performed multiple times, and the 

organic phases (supernatant) are pooled, evaporated, and reconstituted in organic solvents for 

the final identification and quantification. 
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Reconstitution solvent and HPLC conditions   

After evaporating extracting solvents, liver extracts need to be reconstituted in a small 

volume of suitable solvent before injecting into an HPLC column (175).  Ideally, the 

reconstitution solvent should dissolve all of the analytes and adapt to the HPLC mobile phase 

system.  Although the mobile phases were often similar (a combination of methanol, MTBE, 

and water) for the VA analytical methods when C30 column is used, various reconstitution 

solvents (MTBE/methanol mixture (176, 177), MTBE (178), methanol/dichloromethane 

mixture (179, 180) can be found in different protocols.  In a C18 column system, methanol 

(159, 167), isopropanol (172), methanol/isopropanol mixture (181), chloroform/methanol 

mixture (182) were used as reconstitution solvent for VA analysis.  For biofortification 

studies of provitamin A carotenoids, it is necessary to perform an accurate assessment of the 

VA content in the animal’s liver that also accumulates carotenoids (143, 180).  The HPLC 

C30 column is therefore used because of its potential to separate retinoids and carotenoids 

simultaneously (178, 179).  Our research group was the first to use the C30 column for the 

analysis of both retinyl esters and carotenoids (87).  
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Abstract 

β-Carotene-biofortified transgenic sorghum is being developed to alleviate vitamin A 

deficiency (VAD) in semiarid regions of Africa.  Our objective was to quantify the bioefficacy 

of the biofortified sorghum using a Mongolian gerbil model.  Gerbils were fed a vitamin A 

(VA)-free control diet (45% by wt non-transgenic sorghum flour) for 4 wk; 8 animals were 

then killed at baseline.  The remaining animals were randomly assigned to treatments for 6 wk 

(n = 11 per group): 1) control diet dosed daily with cottonseed oil vehicle; 2) biofortified diet 

(45% by wt transgenic sorghum flour) (99.6 nmol retinol equivalents/d) dosed daily with 

cottonseed oil vehicle; 3) control diet dosed daily with β-carotene (84.9 nmol retinol 

equivalents/d); 4) control diet dosed daily with VA (85.1 nmol retinol equivalents/d).  Liver 

VA stores in the baseline (1.27 ± 0.29 µmol), β-carotene-dosed (1.30 ± 0.26 µmol), and 

biofortified (1.31 ± 0.23 µmol) groups were not different; liver stores in the vehicle-dosed 

control group were lower (0.92 ± 0.22 µmol) (P < 0.01).  Liver stores were highest in the VA-

dosed group (2.48 ± 0.23 µmol) (P < 0.0001).  The calculated bioconversion efficiency for the 
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β-carotene in the biofortified sorghum (4.5 µg β-carotene to 1 µg retinol) was similar to that 

of the β-carotene dose (3.8 µg to 1 µg retinol).  The β-carotene in the biofortified sorghum 

effectively restored liver VA stores in an animal model. 

 

Introduction 

As one of the most widespread micronutrient malnutrition diseases worldwide, VA 

deficiency (VAD) is a major cause of preventable childhood blindness and also impairs 

human immune function, especially affecting the poorest populations in low and middle-

income countries (1).  Based on the World Health Organization (WHO) threshold definition 

for biochemical VAD (serum retinol below 0.7 µmol/L), most countries in Sub-Saharan 

Africa and East Asia have over 20% of preschool-age children suffering from VAD (1).  

Because most populations in these areas heavily rely on plant-based diets, provitamin A 

biofortification is a promising approach to alleviate widespread VAD (2). 

Provitamin A biofortification approaches (3) have been successfully applied in 

multiple crops such as maize (4), rice (5), cassava (6), and sweet potato (7) by means of 

transgenic and/or conventional breeding.  According to 2013 Food and Agricultural 

Organization (FAO) data, sorghum is the fourth most important cereal crop worldwide and in 

Africa (8).  Approximately 300 million of Africa’s most food insecure people who live in the 

semi-arid tropics rely on sorghum as their staple crop (9).  However, conventional sorghum 

lines have nutritional flaws (10), including low concentrations of provitamin A carotenoids 

and tocopherols (vitamin E), poor iron and zinc bioavailability due to anti-nutrients such as 

phytate and tannins, and low protein digestibility due to the cross-linking of sorghum kafirin 

proteins through their disulfide bonding (11). The Africa Biofortified Sorghum (ABS) 
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initiative was therefore founded to address these nutritional constraints through genetic 

engineering (12).  

As one of the products of the ABS initiative, transgenic β-carotene-biofortified 

sorghum (ABS 203) was produced by Agrobacterium-mediated transformation (11, 13).  To 

improve the biosynthesis of β-carotene, the biofortified sorghum contains transgenes DXS 

(deoxyxylulose 5-phosphate synthase) from Arabidopsis, PSY-1 (phytoene synthase) from 

maize, and CRT-I (carotene desaturase) from Erwinia uredovora with PMI 

(phosphomannose isomerase) from Escherichia coli as the transformation selection marker.  

As an objective of the Grand Challenges in Global Health program, HGGT (homogentisate 

geranylgeranyl transferase) gene from barley was also inserted and expressed (14), resulting 

in improved vitamin E synthesis to mitigate β-carotene oxidative degradation during storage.  

Hemizygous ABS 203 was previously shown to have increased concentrations of provitamin 

A carotenoids compared with the non-transgenic control sorghum (14).  

Like humans, gerbils absorb β-carotene intact even when ingested in only 

physiological amounts and then accumulate β-carotene in both serum and tissues (15).  

Gerbils convert the ingested β-carotene to vitamin A (VA) with similar efficiency to humans 

(16, 17).  Although human dose-response and stable isotope labeling methods are preferred 

to establish the VA equivalence value for the provitamin A carotenoids in crops, a gerbil 

model provides greater experimental control than in human studies and allows the direct 

quantification of liver VA to determine the true bioefficacy value (18, 19) in a more efficient 

and less expensive way.  Additionally, to ensure better-designed clinical studies, preliminary 

animal studies were recommended in micronutrient supplementation studies (20).  
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To predict the nutritional impact of the β-carotene-biofortified sorghum seeds (ABS 

203), we experimentally determined the bioefficacy of the β-carotene and the other 

provitamin A carotenoids in the biofortified sorghum using a gerbil model.  The experimental 

design was modified based on a previous study (21). 

 

Materials and Methods 

Animals  

Male Mongolian gerbils (n = 52), age 40 days, were obtained from Charles River 

Laboratories (Kingston, NY).  The gerbils were individually housed in polycarbonate cages 

in a temperature- and humidity-controlled room with a 12 h light-12 h dark cycle.  They had 

free access to water and food.  Body weights and food intakes were recorded daily.  Animal 

care procedures were approved by the Iowa State University Committee on Animal Care 

(COAC). 

 

Sorghum and diets  

Field transgenic β-carotene-biofortified ABS203 sorghum plants and their non-

transgenic control plants were grown at DuPont Pioneer (Johnston, IA).  The seeds were 

decorticated by gentle rotation with golf balls in a poly drum utility mixer (Model 300UT-

PL, Cleform Gilson, Marshalltown Co., Marshalltown, IA) in the Iowa State University 

Center for Crops Utilization Research (CCUR).  The pericarps were then separated by 

winnowing.  Briefly, the mixed seeds and pericarps were poured in a vertical stream into a 

container in front of a small fan.  The pericarps were blown horizontally while the seeds 

continued to fall vertically into the container.  This process was repeated 4 more times to 
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produce fully decorticated seeds.  The decorticated seeds were then milled in a burr mill 

(Model DK-15, Mahlkonig GmbH & Company, Hamburg, Germany).  The exterior of the 

mill was cooled with dry ice to prevent heat transfer to the milled sorghum.  After milling, 

the sorghum flours were passed through an 850 µm pore sieve.  The resulting refined 

sorghum flours were stored at -70 °C.  Aliquots of the control and biofortified sorghum 

flours were shipped to Covance Laboratories (Madison, WI) for the analysis of the 

macronutrient composition, including soluble and insoluble fiber (Table 1).  The remaining 

flours were then shipped overnight on dry ice to Research Diets, Inc. (New Brunswick, NJ) 

where they were used as the carbohydrate source in preparing the pelleted animal diets based 

on AIN-93G (22).  For both the 4-week VA-depletion and the 6-week treatment periods, the 

diets contained 45% (by weight) control non-transgenic or biofortified transgenic sorghum 

flours (Table 2).  

 

β-Carotene and VA reference doses  

The β-carotene and VA reference doses in cottonseed oil were prepared from 

commercially available micro-crystalline suspensions in corn oil (β-carotene 30% FS, 

product code 04 27233 004; DSM Nutritional Products, Parsippany, NJ; Vitamin A 

Palmitate, 1.7 million IU/g; DSM Nutritional Products).  The daily dose of β-carotene or VA 

with cottonseed oil (a total of 80 µL) was divided into two equal doses that were given 

approximately 6 hours apart to avoid over-dosing and the resulting reduction in absorption 

and/or bioconversion efficiency.  The daily dose of β-carotene or VA was based on the mean 

food intake and the corresponding mean provitamin A intake (in nmol β-carotene 

equivalents) of the gerbils consuming the β-carotene-biofortified transgenic sorghum on the 
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previous day.  The theoretical VA intake from the provitamin A carotenoids was calculated 

by assuming 100% bioefficacy, i.e., 1 mol of β-carotene provides 2 mol of VA; 1 mol of 

other provitamin A carotenoids provides 1 mol of VA (21, 23). 

 

Experimental design  

There were four dietary treatment groups (Figure 1): 45% control non-transgenic 

sorghum flour diet dosed with cottonseed oil vehicle; 45% β-carotene-biofortified transgenic 

sorghum flour diet dosed with cottonseed oil vehicle, 45% control non-transgenic sorghum 

flour diet dosed with β-carotene in cottonseed oil; and 45% control non-transgenic sorghum 

flour diet dosed with VA in cottonseed oil.  For an initial 4-week VA-depletion period, the 

animals were fed the control non-transgenic sorghum diet.  They were acclimated to the 

study procedures by twice daily dosing with 40 µL of cottonseed oil using a positive 

displacement pipette.  At the end of the 4-week depletion period and after 12 hours of food 

deprivation, 8 animals were killed to determine baseline serum retinol and liver VA stores.  

The remaining gerbils were randomly assigned to 4 experimental groups (n = 11 per group) 

of balanced body weight distribution.  The animals were then fed their respective diets for 6 

weeks.  At the end of the 6-week dietary treatment period and after 12 hours of food 

deprivation, blood samples were collected via cardiac puncture under CO2 anesthesia.  The 

serum was isolated by centrifugation.  The animals were then killed by CO2 asphyxiation.  

Livers were collected, rinsed with isotonic saline, blotted, and weighed.  Liver and serum 

samples were stored at -70 °C until analysis. 
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Carotenoid analysis of sorghum and diet 

A cold saponification method was modified based upon previous methods (24, 25) to 

accurately quantify the carotenoid contents in sorghum flours and animal diets.  About 0.1 g 

biofortified sorghum flour or ground biofortified diet pellet (0.2 g for wild-type sorghum or 

ground control diet pellet) was transferred into a 50-mL test tube (n = 4). Four mL ethanol 

containing 1 g/L butylated hydroxytoluene (BHT) and 375 ng internal standard (β-apo-8'-

carotenal) were added.  After vortexing for 3 min, the samples were incubated in an 85 °C 

water bath for 6 min. The samples were vortexed for 10 seconds after 3 min of incubation.  

After incubation, the samples were immediately placed on ice to cool to room temperature.  

Ethanolic potassium hydroxide (800 µL, 30% w/v) was then added.  After vortexing for 5 

min, 3 mL HPLC grade water were added and the tube was then vortexed for 30 s.  A 

mixture of petroleum ether/diethyl ether (3 mL in total, 2:1 v/v) containing BHT (1 g/L) was 

added and the tube was vortexed for 1 min.  After centrifugation, the upper phase was 

transferred to a 16×100 mm test tube.  The petroleum ether/diethyl ether extraction was then 

repeated for another two times.  The extracts were combined and evaporated to dryness using 

a speed vacuum evaporator (Model SPD 131 DDA, Thermo Electron, Milford, MA) with a 

universal vacuum system (UVS 800 DDA, Thermo Electron).  Dried samples were 

reconstituted with 250 µL methyl tert-butyl ether (MTBE) followed by 750 µL methanol; 

100 µL were injected into the HPLC-PDA system.  
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VA and carotenoid analysis of liver and serum  

Liver and serum samples were extracted without saponification and analyzed by 

HPLC-PDA for determination of VA and carotenoid concentrations (26).  All samples were 

processed under yellow light.  The whole liver samples were first weighted, and then 

homogenized in 5 volumes (w/v) of ethanol containing 1 g/L BHT.  After a 1 h incubation, 

an aliquot of homogenate (250 µL) was transferred to a second test tube.  Internal standard 

(retinyl acetate, 375 ng) in ethanol containing 1 g/L BHT was added.  Hexane (6 mL) 

containing 1 g/L BHT was then added followed by vortexing × 1 min.  After centrifugation, 

the upper phase was transferred to a third test tube.  The hexane extraction was repeated, and 

the combined extracts were evaporated to dryness using a speed vacuum evaporator.  The 

extracts were then reconstituted with MTBE followed by methanol (1:3 ratio); 100 µL were 

injected into the HPLC.  To extract serum retinol and carotenoids, an aliquot of 250 µL 

serum was mixed with 500 µL of ethanol containing 150 ng internal standard (retinyl acetate) 

and 1 g/L BHT.  As for liver, the serum samples were extracted two times with hexane (6 

mL) containing 1 g/L BHT, dried using a speed vacuum evaporator, and reconstituted with 

MTBE/methanol before injecting into the HPLC-PDA.  Each liver and serum sample was 

analyzed in duplicate. 

 

HPLC analysis  

The HPLC-PDA system included a 717 Plus autosampler with the temperature 

control set at 5 ºC, two 515 solvent delivery systems, and a 2996 photodiode array detector 

(Waters Corporation, Milford, MA).  The carotenoids and retinoids were separated on a 5 µm 

C30 Carotenoid Column (4.6 × 250 mm; Waters Corporation).  Analytes were separated by 
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using methanol/water (96.5:3.5 v/v) containing 1% w/v ammonium acetate (solvent A) and 

methanol/MTBE/water (40:58:2 v/v/v, solvent B) as mobile phases.  The following gradient 

was used: 0-15 min, 0% to 45% Solvent B; 15-35 min, linear gradient to 55% Solvent B; 35-

45 min, linear gradient to 85% Solvent B; 45-65 min, linear gradient to 100% Solvent B.  

The flow rate was 1.0 mL/min.  Chromatograms were generated at 286 nm for phytoene, 325 

nm for retinol and retinyl esters, 348 nm for phytofluene, and 450 nm for other carotenoids.  

All solvents were HPLC grade (Fisher Scientific, Fairlawn, NJ).  Calibration standards for α-

carotene, lutein, phytoene, phytofluene, β-zeacarotene, zeaxanthin, and zeinoxanthin were 

purchased from CaroteNature (Lupsingen, Switzerland).  β-Carotene, β-apo-8'-carotenal, 

retinol, retinyl acetate, and retinyl palmitate were purchased from Sigma-Aldrich (St. Louis, 

MO).  Retinyl oleate and retinyl stearate were purchased from Toronto Research Chemicals 

(Toronto, ON, Canada).  Cis-β-carotene isomers were quantified using the all-trans-β-

carotene calibration curve and retinyl linoleate was quantified using retinyl oleate calibration 

curve because retinyl linoleate standard was not commercially available.  The liver VA 

concentrations (in retinol equivalents) reflect retinol and retinyl esters.  

HPLC-PDA-tandem mass spectrometry (Agilent 1100 HPLC system coupled to an 

Angilent 1100 Series photodiode array detector and a Bruker 6300 Series MSD ion trap mass 

spectrometer) with atmospheric pressure chemical ionization (APCI) interface was used to 

identify two unidentified carotenoids in the biofortified sorghum seeds (27).  The column 

was maintained at 22 °C, and the autosampler for injecting the samples was maintained at 

4 °C.  The mass spectrometer was operated in positive ion mode with the source voltage set 

at 4000 V.  Nebulizer pressure was set to 15.0 psi with drying gas (nitrogen) flow rate at 5 

L/min.  Dry temperature and vaporizer temperature were set at 150 °C and 350 °C.  The mass 
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spectra were obtained between m/z values of 100 to 700.  Mobile phases and HPLC linear 

gradient were used as previously described (28). 

 

Data analyses 

The VA equivalence values for the β-carotene and the other provitamin A carotenoids 

in the biofortified sorghum were calculated by comparing the mean liver VA stores at the end 

of the 6-week treatment period for the vitamin A-dosed group and the biofortified sorghum 

group.  The mean increments in the liver VA stores for these treatment groups were first 

calculated by subtracting the mean liver VA stores for the control sorghum treatment group.  

VA equivalence values were expressed as β-carotene equivalents in the sorghum to account 

for the contributions of provitamin A carotenoids other than β-carotene.  Thus, the formulas 

were as:  

Vitamin A (nmol) formed from the biofortified sorghum = (VA intake increment as 

the difference between the VA dose group and control group/liver VA increment as the 

difference between the VA dose group and control group) × liver VA increment between the 

biofortified sorghum group and control group 

where liver VA (in retinol equivalents) is the total of retinol, retinyl linoleate, retinyl 

oleate, retinyl palmitate, and retinyl stearate. 

VA equivalence value of the provitamin A carotenoids in biofortified sorghum to VA 

(by wt) = β-carotene equivalents intake increment between biofortified sorghum group and 

control group (nmol) × 536.8/VA formed from the biofortified sorghum (nmol) × 286.5 

where β-carotene equivalents is the total of  trans β-carotene, 9-cis β-carotene, 13-cis 

β-carotene , and (α-carotene + cis β-carotene)/2 (23, 29, 30). 
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By using similar calculations, the VA equivalence value for the β-carotene reference 

dose was determined. 

 

Statistical analyses 

Daily body weights and weekly food intake during the 6-week treatment period were 

analyzed by using a repeated-measures ANOVA linear model with study day as covariate 

followed by Tukey’s post hoc test.  The fixed effects were treatment group, study day, and 

group  study day interaction; the random effects were the animals.  An autoregressive order 

1 AR(1) covariance structure was applied.  Mean daily food intake, serum retinol 

concentrations, liver weights, and liver VA stores were analyzed by using one-way analysis 

of variance (ANOVA) followed by independent t-tests with Tukey’s adjustment when there 

were significant differences among groups.  For the liver storage rate for carotenoid, a mixed 

effects model was used to perform all pairwise comparisons with a Tukey’s adjustment.  

Carotenoid was included as a fixed effect.  Gerbil was included in the model as a random 

effect to account for correlation between multiple analyzed carotenoids from the same gerbil.  

Because the liver storage rates of total β-carotene equivalents and total intact phytoene had 

unequal residual variances, heterogeneous variances of these two variables were accounted 

and adjusted in the model.  A P value < 0.05 was considered significant. 

 

Results 

Analysis of the sorghum diet and food intake 

An HPLC method was developed to resolve the 15 carotenoids (lutein, zeaxanthin, 

zeinoxanthin, α-carotene, 9-cis β-carotene, 13-cis β-carotene, trans β-carotene, β-
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zeacarotenes, two phytoene isomers and three phytofluene isomers) in the biofortified 

sorghum.  A representative HPLC-PDA chromatogram and carotenoid profile of the 

transgenic β-carotene-biofortified sorghum are shown in Figure 2 and Table 3.  The internal 

standard (β-apo-8'-carotenal) recovery was 94% ± 4% (means ± SD).  Total β-carotene 

equivalents (means ± SD) were 9796 ± 51 ng/g flour for ABS 203 biofortified sorghum and 

761 ± 32 ng/g for non-transgenic control sorghum. 

By using HPLC-mass spectrometry, the unidentified carotenoids in the sorghum 

extract were identified as a non provitamin A carotenoid zeinoxanthin and two cis isomers of 

the provitamin A carotenoid, β-zeacarotene.  The identification of zeinoxanthin commercial 

standard was confirmed based on the presence of an intense protonated molecular ion signal 

at m/z 553.5 [M + H]+ (Figure 3).  The identifications of cis β-zeacarotene isomers were 

based on both their retention times and their protonated molecular ions at m/z 539.5 ([M + 

H]+) (Figure 4). 

Weekly food intakes during the 6-wk treatment phase did not differ among treatment 

groups by repeated-measures ANOVA.  The mean daily food intakes (± SD) ranged from 

5.28 ± 0.31 g (control group) to 5.67 ± 0.37 g (biofortified group), respectively.  The mean 

daily food intakes were not significantly different among the treatment groups. 

 

Gerbil body and liver weights 

There were no significant differences among the four treatment groups in the body 

weights of the growing gerbils (Figure 5).  Liver weights were also not significantly 

different among the treatment groups.  The mean liver weights (± SD) were 2.18 ± 0.25 g 
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(baseline group), 2.32 ± 0.28 g (control group), 2.25 ± 0.26 g (biofortified group), 2.04 ± 

0.25 g (β-carotene-dosed group), and 2.22 ± 0.23 g (vitamin A-dosed). 

 

Serum retinol and carotenoid concentrations 

The mean serum retinol (± SD) in the baseline (1.43 ± 0.11 µmol/L), control (1.35 ± 

0.16 µmol/L), biofortified (1.33 ± 0.12 µmol/L), β-carotene-dosed (1.27 ± 0.14 µmol/L), and 

vitamin A-dosed (1.37 ± 0.11 µmol/L) groups were not different (P = 0.13).  The internal 

standard (retinyl acetate) recovery was 99.9% ± 3.6% (means ± SD).  Serum retinol 

concentration is homeostatically controlled and therefore only falls when animals are 

severely VA deficient with a markedly low hepatic VA store.  We do not expect a significant 

difference in serum retinol concentration because the study was designed to induce only 

marginal VA deficiency and all gerbils were observed to be in an overall healthy condition 

with normal physiological functions. Most carotenoids were not detected in the serum of the 

gerbils in any of the treatment groups; the exception was several colorless carotenoids that 

were detected in the serum of the animals in the biofortified group (Table 4) including 

phytoene isomer #1 (0.04 ± 0.01 µmol/L), phytoene isomer #2 (0.10 ± 0.05 µmol/L), and 

phytofluene isomer #3 (0.02 ± 0.004 µmol/L). 

 

Liver VA and carotenoid contents 

The mean liver VA stores (± SD) stores in the baseline (1.27 ± 0.29 µmol), β-

carotene-dosed (1.30 ± 0.26 µmol), and biofortified (1.31 ± 0.23 µmol) groups were not 

different.  Liver VA stores in the control group were lower (0.92 ± 0.22 µmol) (P < 0.03).  

Liver VA stores were highest in the VA-dosed group (2.48 ± 0.23 µmol) (P < 0.0001) 
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(Figure 6a).  The same trend was found when liver VA was expressed as VA concentration 

(Figure 6b).  The internal standard (retinyl acetate) recovery was 96.3% ± 3.8% (means ± 

SD).  The calculated VA equivalence values for the provitamin A carotenoids were 4.5 µg 

(biofortified sorghum group) and 3.8 µg (β-carotene dosed group) β-carotene equivalents to 1 

µg retinol (Table 5).  

Liver β-carotene contents in the β-carotene-dosed group (2.06 ± 0.70 nmol/liver) and 

the biofortified group (2.29 ± 0.77 nmol/liver) were not significantly different.  β-Carotene 

was not detected in the livers of the gerbils in the baseline, vehicle-dosed control, or VA-

dosed groups (Figure 6c).  Other liver carotenoids included two phytoene, three phytofluene, 

and two cis β-zeacarotene isomers in biofortified group. (Table 4).  Carotenoid liver storage 

rate of gerbils in the biofortified group was calculated by dividing liver carotenoid content by 

total dietary intake of the corresponding carotenoid in treatment period (21) (Table 6).  

 

Discussion 

In a VA depletion gerbil model, we determined the calculated VA equivalence for the 

provitamin A carotenoids in the biofortified sorghum as 4.5 µg β-carotene equivalent to 1 µg 

retinol (4.5:1 by wt), which is lower than the VA equivalence proposed by the U.S. National 

Academy of Medicine for dietary β-carotene in mixed foods (12:1 by wt) (31).  Sorghum is 

likely to have similar VA equivalence with other starchy biofortified grains because the food 

matrix is one of the most influential factors that determines carotenoid bioavailability (32).  

Compared with the carotenoids from chloroplasts in green-leafy vegetables, the carotenoids 

from endosperm amyloplasts (starch-storing plastids) in grains were more efficiently released 

in the human digestive system (33, 34), resulting in comparatively low VA equivalence 
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values.  This value for biofortified maize ranged from 3.2:1 by wt in healthy Zimbabwean 

men and 6.5:1 by wt in healthy U.S. women to 10.4:1 by wt in Zambian children, many of 

whom were marginally vitamin A deficient (28, 35, 36).  In gerbil studies of β-carotene-

biofortified maize, VA equivalence values ranged from 2.1:1 by wt to 6.3:1 by wt (21, 37-

39).  Considering that both sorghum and maize are members of the grass family Poaceae with 

similar structure (hard and floury endosperm, large fat-rich germ, and no true hulls) (40), it is 

reasonable to expect similar VA equivalence values between them.  For Golden Rice that is 

also a transgenic β-carotene-biofortified grain with a starchy matrix, the VA equivalence 

values were estimated to be 2.3:1 by wt in healthy Chinese children and 3.8:1 by wt in 

healthy US adults (41, 42). 

In the current study, 3.8 µg of pure β-carotene dissolved in oil was equivalent to 1 µg 

VA (3.8:1 by wt), which was similar to the 4.5 to 1 vitamin A equivalence of the β-carotene 

and other provitamin A carotenoids in the biofortified sorghum.  This calculated VA 

equivalence value for pure β-carotene in oil was greater than that established by the U.S. 

National Academy of Medicine for human subjects (2:1 by wt).  Two factors may contribute 

to this gap.  First, compared with humans, gerbils were reported to have greater VA 

equivalence values for β-carotene dissolved in oil, ranging from 2.4:1 by wt to 4.6:1 by wt 

(21, 37, 38, 43).  Second, the gerbils in the BC dosed group were fed more β-carotene in our 

study (approximately 1.76 µmol β-carotene equivalents over the 6-wk treatment period) than 

in the above-cited studies (ranging from approximately 0.37 µmol β-carotene equivalents to 

approximately 1.48 µmol β-carotene equivalents for the treatment period), resulting in 

comparatively higher VA stores.  Because the absorption and conversion of provitamin A 

carotenoids are under negative feedback regulation through the expression of SCARB1 and 
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BCO1 genes that respectively encode scavenger receptor type B class I and β-carotene 15-

15'-oxygenase, the bioconversion efficiency of β-carotene is inversely related to VA status 

(44).  A relatively higher VA equivalence value for the β-carotene dose in our study was 

therefore expected.    

Assuming that the moisture content of the sorghum seeds was 6.6%, and the cooking 

retention rates for provitamin A carotenoids were 77% and dry matter content was 22.9% as 

reported for traditional African sorghum porridge (14, 45), a 200 g serving of sorghum 

porridge would contain 49 g biofortified sorghum flour and 370 µg β-carotene equivalents.  

If our vitamin A equivalence value measured in gerbils may be extrapolated to humans, one 

serving of biofortified sorghum porridge would be expected to provide 82 µg retinol activity 

equivalents (RAEs) and 39% of the estimated average requirement (EAR) for VA (210 µg 

RAE/d) for children ages 1-3 years (31).  

Accurate identification and quantification of the provitamin A carotenoids in the 

biofortified sorghum is an essential step in an in vivo bioefficacy study.  Even a trivial 

amount of provitamin A carotenoids in the sorghum diet could accumulate and make an 

impact on whole-body stores of VA over a 6-wk feeding period.  Overlooking or mistakenly 

quantifying provitamin VA carotenoids would overestimate or underestimate the final VA 

equivalence value.  To make definitive identification of the provitamin A carotenoids in the 

biofortified sorghum, LC-(APCI)MS was used to obtain the molecular mass and mass spectra 

of the unidentified carotenoids, which were subsequently identified as zeinoxanthin and two 

cis isomers of β-zeacarotene.  Zeinoxanthin and α-cryptoxanthin have the same molecular 

weight and similar chromophore spectrum (46).  However, α-cryptoxanthin has provitamin A 

activity based on its structure whereas zeinoxanthin is classified as a non-provitamin A 
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xanthophyll (47).  Because the C30 YMC Carotenoid Column was known to be able to 

separate zeinoxanthin and α-cryptoxanthin (48), the identification of zeinoxanthin in our 

sorghum flour was confirmed through coelution with a commercial zeinoxanthin standard.  

In turn, the identity of the zeinoxanthin standard was confirmed by LC/MS based on the 

presence of an intense protonated molecular ion signal at m/z 553 [M + H]+.  In contrast, α-

cryptoxanthin would show a quasi-molecular ion with low relative abundance and an intense 

fragment ion of m/z 535 [M + H – H2O]+.  The loss of the hydroxyl group of α-cryptoxanthin 

in the ionization chamber is relatively facile because it is located in the ε-ring allylic to the 

double bond (27, 49).  

  After an initial incubation with ethanol, heat treatment (in an 85 °C water bath) and 

saponification are reported to be essential steps for the complete extraction and HPLC-PDA 

chromatography of carotenoids in maize (25).  Because our sorghum diet contained 7% fat 

wt/wt, saponification was used to remove unwanted lipids that might interfere with the 

chromatographic separation.  Published methods recommend that an internal standard (e.g. β-

apo-8'-carotenal) be added after saponification to avoid low internal standard recovery (21, 

50).  However, this practice would lead to an underestimation of the carotenoid contents due 

to the failure to adjust for the carotenoid losses during the heating step, which could be a 

primary source of β-carotene degradation (51).  To add internal standard at the beginning of 

the extraction protocol as a “true” internal standard, we made modifications to a published 

protocol (52) based on several other carotenoid extraction methods (53, 54) and conducted a 

room temperature saponification after the initial incubation of the milled seed with ethanol at 

85°C in a water bath.  With these modifications, the internal standard recovery was 94% ± 
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4% (means ± SD).  Gerbil livers were homogenized in 100% ethanol, which improved 

extraction efficiency compared with homogenization in an aqueous buffer (data not shown).  

After 6 weeks of feeding a VA-free diet, the gerbils fed control sorghum had lower 

liver VA stores compared with the gerbils killed at baseline (P < 0.03).  Gerbils fed 

biofortified sorghum had total liver VA stores that were not statistically different from those 

of the gerbils killed at baseline or the β-carotene-dosed gerbils.  However, the total liver VA 

stores of the gerbils fed biofortified sorghum were significantly higher than those of the 

gerbils fed control sorghum.  As expected, liver VA stores were highest in the VA dosed 

group (P < 0.0001) because preformed dietary VA has approximately 100% bioavailability 

(31).  Serum retinol concentrations did not differ among the treatment groups as expected 

because as mentioned above it is homeostatically controlled in healthy animals.  Therefore, 

the biofortified sorghum effectively restored liver VA stores in a VA-depleted animal model.  

Theoretical VA intake from the provitamin A carotenoids was calculated by assuming 

1) 1 mol of trans or cis β-carotene provides 2 mol of VA; 2) 1 mol of α-carotene or cis β-

zeacarotene provides 1 mol of VA.  In previous gerbil feeding studies, 9-cis β-carotene and 

13-cis β-carotene were not different compared with trans β-carotene in maintaining VA 

status (23).  Also, α-carotene was shown to have 50% of the provitamin A activity of β-

carotene (29).  There is little available data regarding the provitamin A activity of β-

zeacarotene.  In a single study using the rat growth curative assay (30), the provitamin A 

value of β-zeacarotene was reported to be roughly one-fourth that of β-carotene. However, to 

the best of our knowledge, this study has not been replicated.  Therefore, the two β-

zeacarotene isomers in our study were assumed to have 50% of the provitamin A activity of 
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β-carotene based on their chemical structures (one unsubstituted β-ionone ring and one open 

ring).  

Lipkie et al. (14) evaluated the carotenoid profile and in vitro micellarization 

efficiency of ABS 203 sorghum.  The carotenoid profile of our ABS 203 was similar to the 

carotenoid profile that they reported.  The differences between our ABS 203 event and the 

Hemi203 sorghum used in the study of Lipkie et al. (14) were that our sorghum was 1) 

homozygous in the T2 generation instead of hemizygous in the T1 generation; and 2) grown 

and harvested in the field instead of in a greenhouse.   

As the precursors of lycopene and other downstream carotenoid products, the 

colorless carotenoids phytoene and phytofluene are accumulated in carotenoid-rich fruits and 

vegetables (55, 56).  Because transgenic β-carotene-biofortified sorghum contains enhanced 

level of DXS, PSY-1, and CRT-I enzymes, increased amounts of phytoene and phytofluene 

were detected in the biofortified sorghum flour and diet.  Compared with vegetables which 

are known to be rich sources of colorless carotenoids, β-carotene-biofortified sorghum 

contains approximately 3 times higher phytoene concentration than carrots, and 

approximately 3 times greater phytoene and 1.2 times greater phytofluene content than 

tomatoes (57).  A growing body of evidence suggests that these colorless carotenoids may 

play preventative roles against chronic diseases such as several cancers and cardiovascular 

disease (58).  β-Carotene-biofortified sorghum may be an excellent vehicle to provide these 

biofunctional phytochemicals to humans.  

We found proportionally more total dietary phytoene (1.9 ± 0.6%) and phytofluene 

(1.7 ± 0.3%) accumulated in the livers of the gerbils in the biofortified group compared with 

their hepatic accumulation of total dietary β-carotene (0.12 ± 0.04%) (TABLE 6).  This 
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finding is consistent with that of Moran et al. (59) who also found that the gerbil liver 

accumulates a greater percentage of colorless carotenoids as compared with β-carotene, 

which might be attributed to their different absorption, bioconversion, and clearance rates in 

vivo.  If bioconverted β-carotene equivalents (liver VA storage increment contributed by 

provitamin A carotenoids) were counted in the calculation, the liver storage rate of dietary 

provitamin A of carotenoids (9.5 ± 5.5%) was significantly higher than that of either 

phytoene or phytofluene (P < 0.001).  The above result suggests that colorless carotenoids 

might have much lower absorption efficiency than that of the provitamin A carotenoids.  

Interestingly, cis β-zeacarotene was also detectable in the livers of the gerbils in the 

biofortified group.  Instead of being enzymatically cleaved into VA or other apocarotenoids, 

more intact cis β-zeacarotene (0.83 ± 0.12% of the total dietary cis β-zeacarotene) was 

accumulated in the gerbils’ livers compared with the accumulated β-carotene (P < 0.0001).  

Because cis isomers of carotenoids show less tendency to accumulate in animals’organs 

compared with their all-trans counterparts (60), our study suggests that dietary trans β-

zeacarotene will probably deposit in the gerbil’s liver to a greater extent than cis β-

zeacarotene and have lower provitamin A activity than 50% of that of β-carotene.  This 

hypothesis agrees with the findings of a previous study (30).  To our knowledge, this is the 

first in vivo study to determine the bioavailability of β-zeacarotene from a food matrix.  

However, isotopic labeling technology is needed to confirm the conversion mechanism and 

the provitamin A activity of β-zeacarotene. 

Proximate composition of the sorghum flours is presented in Table 3.  No major 

differences were observed between the non-transgenic control and the transgenic biofortified 

flours.  Compared with the wild-type control, the transgenic sorghum had a slightly higher 
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insoluble fiber content (+13.2%).  However, insoluble fiber differences of 16.7% had no 

effect on the bioefficacy of β-carotene in previous gerbil studies (39). In the 6 week treatment 

period, the biofortified flour was well tolerated by the group of gerbils that received as much 

as 45% β-carotene-biofortified sorghum flour in their daily diets.  

 

Conclusions 

In summary, this study is the first in vivo study of transgenic β-carotene-biofortified 

sorghum.  By using improved analytical methods, we showed that β-carotene and the other 

provitamin A carotenoids in the biofortified sorghum: 1) effectively restored liver VA stores 

in a VA-depleted animal model; 2) had efficacy similar to that of a supplemental β-carotene 

dose in maintaining liver VA stores.  Accurate measurement of the provitamin A value of β-

carotene-biofortified sorghum using a gerbil model provides sound evidence of bioefficacy in 

improving VA status and a preliminary basis for future human feeding studies.  
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FIGURE 1. Experimental design.  The 10-week study was divided into two periods: 

1) an initial 4-wk depletion period on a VA-free control sorghum diet; and 2) a 6-wk 

dietary treatment period.  The daily dose of β-carotene or VA was based on the 

mean food intake and the corresponding mean provitamin A intake (in nmol β-

carotene equivalents) of the gerbils consuming the β-carotene-biofortified transgenic 

sorghum on the previous day.  The gerbils in the baseline group (n = 8) were killed 

at the end of the 4-wk VA depletion period.  The remaining animals were randomly 

assigned to 4 treatment groups of balanced body weight distribution (n = 11 per 

group).  These gerbils were killed at the end of the 6-wk dietary treatment period.  
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FIGURE 2. HPLC-PDA chromatographic profile of the carotenoids in β-carotene-

biofortified sorghum flour detected at 453 nm, 348 nm, and 286 nm. Peaks: 1, lutein; 

2, zeaxanthin; 3, β-apo-8'-carotenal (internal standard); 4, phytoene isomer #1; 5, 

zeinoxanthin, 6, phytoene isomer #2; 7, phytofluene isomer #1; 8, phytofluene 

isomer #2; 9, phytofluene isomer #3; 10, 13-cis β-carotene; 11, α-carotene; 12, trans 

β-carotene; 13, 9-cis β-carotene; 14, cis β-zeacarotene #1; 15, cis β-zeacarotene 

#2. 
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FIGURE 3. Chemical structures and mass spectra of the commercial zeinoxanthin 

standard. 
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FIGURE 4. Chemical structures and mass spectra of the carotenoid identified as cis-

β-zeacarotene in the β-carotene-biofortified sorghum. 
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FIGURE 5. Mean body weights of the gerbils in the treatment groups (n = 11/group): 

control sorghum diet dosed with oil vehicle (Control); β-carotene-biofortified sorghum 

diet dosed with oil vehicle (Biofortified); control sorghum diet dosed with β-carotene 

in oil vehicle (BC dose); and control sorghum diet dosed with VA in oil vehicle (VA 

dose).  No group differences were detected by repeated measures ANOVA with the 

day as covariate followed by Tukey’s adjustment, P < 0.05. 
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FIGURE 6. Total liver VA (A), liver VA concentration (B), and total liver β-carotene 

(C) in the: 1) baseline group (n = 8) after 4 wk of VA depletion; and 2) treatment 

groups (n = 11/group) after 6 wk of different dietary treatments.  Bars having 

different letters are different by one-way ANOVA, P < 0.05.  
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TABLE 1   

Nutritional profiles of the sorghum flours1 

  Sorghum flour 

  β-Carotene-biofortified Control 

 per 100 g flour 

Calories 367.0 368.5 

Calories from fat 34.7 32.4 

Fat by acid hydrolysis (g) 3.9 3.6 

Carbohydrates (g) 69.6 71.3 

Soluble fiber (g) < 0.75 0.8 

Insoluble fiber (g) 11.1 9.8 

Total dietary fiber (g) 11.1 10.6 

Protein (g) 13.5 12.7 

Ash (g) 1.7 1.6 

Moisture (g) 11.4 10.8 

1Analyses were performed by Covance Laboratories, Madison, WI.  All values 

are means of two replicate measurements. 
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TABLE 2   

Composition of the experimental animal diets 1 

  Experimental diet 

Ingredient β-Carotene-biofortified Control 

 g/kg diet 

Sorghum flour 450 450 

Casein 158 164 

L-Cystine        3.0        3.0 

Maltodextrin 181 174 

Sucrose 110 110 

Cellulose     1        3.5 

Cottonseed oil   53   53 

t-Butylhydroquinone            0.014            0.014 

Mineral mix2   35   35 

Magnesium oxide        1.6        1.6 

Vitamin mix  (VA-free)3   10   10 

Choline Bitartrate         2.5         2.5 

1 Provided by Research Diets, Inc.  Formulations design was based on AIN-93G 

(22). 

2 Mineral Mix (22). 

3 Vitamin Mix (AIN-93-VM without VA palmitate) (22). 
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TABLE 3   

Carotenoid concentrations in the sorghum flours1 

  Sorghum flour 

Carotenoid β-Carotene-biofortified Control 

 ng/g flour  

Lutein 10393 ± 316 2968 ± 35  

Zeaxanthin 5223 ± 126 2433 ± 56 

Zeinoxanthin 1049 ± 63 322 ± 21 

Phytoene isomer #1 42522 ± 1528 486 ± 30 

Phytoene isomer #2 1531 ± 105 ND2 

Phytofluene isomer #1 2493 ± 49 ND 

Phytofluene isomer #2 1589 ± 33 ND 

Phytofluene isomer #3 558 ± 25 ND 

α-Carotene 298 ± 36 36 ± 4 

Cis-β-zeacarotene #1 1304 ± 18 ND 

Cis-β-zeacarotene #2 438 ± 27 ND 

9-Cis-β-carotene 817 ± 19 122 ± 11 

13-Cis-β-carotene 827 ± 25 104 ± 9 

Trans-β-carotene 7132 ± 33 517 ± 18 

Total β-carotene 8776 ± 37 743 ± 33 

Total β-carotene equivalents3 9796 ± 51 761 ± 32 

1 All values are means ± SD; n = 4.  
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2 ND, not detected. 

3 Calculated assuming that α-carotene and cis-β-zeacarotene each have 50% of the 

provitamin A activity of β-carotene. 
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TABLE 4   

Phytoene, phytofluene, and β-zeacarotene concentrations in the livers and serum of 

the gerbils that consumed the biofortified sorghum1 

Carotenoid Liver Serum 

 (nmol/liver)  (nmol/L)  

Phytoene isomer #1 71.5 ± 17.8 0.04 ± 0.01 

Phytoene isomer #2 86.3 ± 35.6 0.10 ± 0.05 

Phytofluene isomer #1 10.9 ± 1.7 ND2 

Phytofluene isomer #2 5.3 ± 1.0 ND 

Phytofluene isomer #3 3.4 ± 0.8 0.02 ± 0.004 

Cis β-zeacarotene #1 2.3 ± 0.6 ND 

Cis β-zeacarotene #2 0.87 ± 0.19 ND 

1 All values are means ± SD; n = 11.  

2 ND, not detected. 
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CHAPTER 4: OPTIMIZING EXTRACTION PROTOCOLS  

FOR QUANTIFYING HEPATIC RETINOL AND RETINYL ESTERS 

A manuscript prepared for submission to Analytical and Bioanalytical Chemistry 

Hong You and Wendy S. White 

Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 

 

Abstract 

The liver is the primary site for vitamin A storage.  Accurate quantification of hepatic 

retinol and retinyl esters is necessary for the determination of vitamin A status in animal 

models.  Our objective was to optimize methods for the extraction and HPLC analysis of 

hepatic retinol and retinyl esters.  We first compared published non-saponification hepatic 

vitamin A extraction protocols by using livers collected previously from Sprague-Dawley 

rats.  Based on the results of this comparison, we then investigated the effects of the: 1) 

homogenization media; 2) duration of vortexing before adding hexane; and 3) reconstitution 

solvents.  Method #1 (J Lipid Res 2014;55:1077-86) resulted in higher hepatic total vitamin 

A concentrations (423 ± 72.9 nmol/g) than Method #2 (Methods Mol Biol 2010;652:263-75) 

(36.8 ± 5.35 nmol/g), Method #3 (Anal Methods 2010;2:1320-1332) (347 ± 26.6 nmol/g), 

and Method #4 (Food Chem 2014;159:477-85) (288 ± 49.1 nmol/g) (P < 0.0001).  An 

adequate volume of ethanol added before homogenization of the liver tissue is critical 

because ethanol is needed in the homogenization media to extract retinoids from liver tissues 

and then partition them directly to hexane.  Homogenizing liver in 100% PBS might facilitate 

liver tissue binding with water molecules and therefore interfere with the above partitioning 

process.  Adequate duration of vortexing after homogenization and before adding hexane was 
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shown to be crucial for the exhaustive extraction of hepatic retinol and retinyl esters.  The 

selection of the reconstitution solvent was important for optimal chromatography and 

therefore for accurate quantification. 

 

Introduction 

In mammals, the liver is the major vitamin A (VA) storage site that contains 50% to 

80% of the body’s total VA (retinol plus retinyl esters) (1, 2).  Liver stellate cells contain 

about 90% of hepatic total VA stores.  About 98% of the storage form of VA is present as 

long-chain fatty acid esters of retinol (3).  Serum retinol concentration is homeostatically 

controlled and therefore not suitable to be used as a precise indicator of body VA stores.  

Total VA (retinol plus retinyl esters) stores in the liver is considered to be the “gold 

standard” for determining VA status and is therefore used in animal studies for VA 

assessment (4).  High-performance liquid chromatography (HPLC) is an efficient and reliable 

tool for VA identification and quantification (5).  Numerous bioavailability and physiology 

studies of provitamin A carotenoids require the accurate assessment of the VA content in the 

animal’s liver that also accumulates carotenoids (6, 7).  The HPLC C30 column is therefore 

often used because of its potential to simultaneously separate retinoids and carotenoids (8, 9).    

Hepatic VA extraction and HPLC chromatography can be difficult because of 

interfering components in the sample matrix including fat, membrane proteins, enzymes, 

phospholipids, and other fat-soluble nutrients (10, 11).  These components and the liver 

tissue structure may prevent hepatic VA from being completely extracted by organic 

solvents.  Appropriate sample pre-treatments can effectively minimize errors due to 

incomplete extraction.  A typical rat liver VA extraction protocol is presented in Figure 1.  
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Saponification before hexane extraction is included in some VA analytical methods to 

convert retinyl esters to retinol, which simplifies subsequent HPLC analysis by allowing a 

single measurement of total VA (12, 13).  However, some analytical methods exclude the 

saponification step as unnecessary and a potential source of error due to the degradation of 

the analytes (14, 15).  Thus each step of the analytical procedure should be carefully 

evaluated from the liver homogenization step to the reconstitution step immediately 

preceding injection of the sample into the HPLC.   

To optimize the hepatic VA extraction method and elucidate the rationale underlying 

each extraction step, we compared published non-saponification extraction protocols for 

HPLC analysis of retinol (ROL) and retinyl esters in rodent livers.  We then investigated the 

effects of key factors upon hepatic VA extraction efficiency, including the volume of ethanol 

added before homogenization of the liver tissue and the duration of vortexing after 

homogenization and before adding hexane.  The selection of the reconstitution solvent was 

also investigated for optimal chromatography and therefore for accurate quantification.  

 

Materials and Methods 

Chemicals and reagents  

All solvents were HPLC grade (Fisher Scientific, Fairlawn, NJ).  Retinol (ROL), 

retinyl acetate (RA, internal standard), and retinyl palmitate (RP) were purchased from 

Sigma-Aldrich (St. Louis, MO).  Retinyl oleate (RO) and retinyl stearate (RS) were 

purchased from Toronto Research Chemicals (Toronto, ON, Canada).  Phosphate buffered 

saline (PBS) was purchased from Life Technologies (Gaithersburg, MD).  Unless otherwise 

mentioned, all other chemicals were obtained from Sigma-Aldrich (St. Louis, MO).  HEPES-
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KOH buffer contained 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 

1 mM ethylenediaminetetraacetic acid disodium (EDTA-Na2) salt solution, 11.5 g/L of 

potassium chloride (Fisher Scientific, Fairlawn, NJ), and 0.1 mM dithiothreitol.  Potassium 

hydroxide (KOH) was used to titrate the HEPES-KOH buffer to pH 7.4.   

 

Equipment  

The HPLC system included a 717 Plus autosampler with the temperature control set 

at 5ºC, two 515 solvent delivery systems, and a 2996 photodiode array detector (Waters 

Corporation, Milford, MA).  The analytes were separated on a 5 µm C30 Carotenoid Column 

(4.6 × 250 mm; YMC, Allentown, PA).  A PowerGen 125 Homogenizer (Fisher Scientific, 

Fairlawn, NJ) was used for homogenizing the livers (speed 6).  A speed vacuum evaporator 

(Model SPD 131 DDA, Thermo Electron, Milford, MA) with a universal vacuum system 

(UVS 800 DDA, Thermo Electron) was used to evaporate the combined extracts to dryness. 

 

Animals and diets 

Livers from Fischer 344 rats were obtained from Iowa State University Laboratory 

Animal Resources.  Sprague-Dawley (SD) rat livers were generously provided by Dr. 

Matthew Rowling at Iowa State University.  All rodent livers were stored at -80°C and used 

after thawing completely for 30 min at room temperature.   

 

Method comparison 

Livers from 8-9 wk old male Sprague-Dawley rats were used to compare the 

published methods.  Four samples equidistant from the portal vein were taken from each liver 
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(n = 4).  Four published methods were compared by using each method to analyze one of the 

four samples from each liver.  To isolate the effects of the different extraction protocols and 

to adapt to the C30 HPLC analytical column, the reconstitution solvent used in the different 

published methods was changed to a unified methyl-tert-butyl ether (MTBE) and methanol 

(1:3, by vol) mixture.  Sample injection volumes for each of the four methods were also 

standardized for the purpose of comparison.  

Method #1 - Homogenizing in ethanol (16).  Liver samples (0.1 g) were 

homogenized in 1 mL ethanol (1.0 g BHT/L) containing 938 ng RA (internal standard) for 15 

s.  After room-temperature incubation for 1 h followed by vortexing for 5 s, 6 mL hexane 

(1.0 g BHT/L) was added and vortexed for 3 min.  After centrifuging, the hexane extract was 

transferred to a test tube.  Hexane extraction was repeated, and the combined extracts were 

evaporated to dryness.  The extracts were then reconstituted with 625 uL MTBE followed by 

1875 uL methanol (1:3).  A 100 uL aliquot of the reconstituted extract (1/25 of sample, 0.004 

g) was injected into the HPLC system. 

Method #2 - Homogenizing in PBS (17).  Liver samples (0.1 g) were homogenized 

in 2 mL PBS for 15 s.  A 200 uL aliquot of the homogenate was transferred to a test tube, and 

93.8 ng RA (internal standard) in 200 uL ethanol (1.0 g BHT/L) was added.  After vortexing 

for 5 s, 4 mL hexane (1.0 g BHT/L) was added and vortexed twice for 30 s.  After 

centrifuging, the hexane extract was transferred to a second test tube containing 500 uL 

water.  After centrifuging, the hexane layer was transferred to a third test tube and evaporated 

to dryness.  The extracts were then reconstituted with 62.5 uL MTBE followed by 187.5 uL 

methanol (1:3).  A 100 uL aliquot of the reconstituted extract (1/25 of sample, 0.004 g) was 

injected into the HPLC system.  
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Method #3 - Homogenizing in PBS/ethanol mixture (18).  Liver samples (0.1 g) 

were homogenized in 2 mL PBS plus an equal volume of ethanol (1.0 g BHT/L) containing 

938 ng RA (internal standard) for 15 s.  After vortexing for 5 s, 4 mL hexane (1.0 g BHT/L) 

was added, and the tubes were shaken for 15 min in the dark.  After centrifuging, the hexane 

extract was transferred to a second test tube.  Before the next addition of hexane, a brief 

vortex step was added to disperse the tissue pellet.  The hexane extraction was repeated two 

more times and the combined extracts were evaporated to dryness.  The extracts were then 

reconstituted with 625 uL MTBE followed by 1875 uL methanol (1:3).  A 100 uL aliquot of 

the reconstituted extract (1/25 of sample, 0.004 g) was injected into the HPLC system.  

Method #4 - Homogenizing in HEPES-KOH (6).  Liver samples (0.2 g) were 

homogenized in 1 mL HEPES-KOH buffer (50 mM, pH 7.4) for 15 s.  A 500 uL aliquot was 

transferred to a test tube, and 938 ng RA (internal standard) in 500 uL ethanol (1.0 g BHT/L) 

was added.  After vortexing for 5 s, 2 mL hexane (1.0 g BHT/L) was added and vortexed for 

3 min.  After centrifuging, the hexane extract was transferred to a second test tube.  The 

hexane extraction was repeated two more times and the combined extracts were evaporated 

to dryness.  The extracts were then reconstituted with 625 uL MTBE followed by 1875 uL 

methanol (1:3).  A 100 uL aliquot of the reconstituted extract (1/25 of sample, 0.004 g) was 

injected into the HPLC system.  

 

Evaluation of individual step of the analytical procedure 

Key factors expected to influence liver vitamin A extraction efficiency are 

summarized in Figure 1.  Method #3 involves the addition of both ethanol and PBS prior to 

homogenization.  Therefore, we used Method #3 to investigate the effects of changing the 
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homogenization media.  We also investigated the duration of vortexing before adding hexane 

and the effects of the composition of the reconstitution solvent.   

Effects of the homogenization media.  Sixteen samples (0.1 g each) were taken 

equidistant from the portal vein in each of four livers from 29 wk old male F344 rats.  The 

liver samples were then homogenized in either: 1) 4 mL of PBS/ethanol (1:1, by vol); 2) 2 

mL of 100% PBS followed by the addition of 2 mL ethanol after homogenization; or 3) 2 mL 

of 100% ethanol followed by the addition of 2 mL PBS after homogenization.  Thus all of 

these liver samples ultimately contained 1:1 PBS/ethanol before the addition of hexane.  PBS 

and ethanol were chosen for comparison because they are typically used as homogenization 

media (16-18).  The samples were then spiked with 938 ng RA (internal standard) in a small 

amount of ethanol (approximately 200 µL).  To avoid adding extra ethanol to the 

homogenization media, the internal standard was added after homogenization.  These 

homogenates were then analyzed as specified by the remaining steps of Method #3.  For the 

purposes of comparison, the remaining liver samples were extracted by using Method #1.  

Method #1 was modified to include three rather than two hexane extractions to promote 

exhaustive extraction of the hepatic VA. 

Effects of the duration of vortexing.  One liver from a 29 wk old male F344 rat was 

used, and six samples equidistant from the portal vein were taken.  Liver samples were 

homogenized in PBS:ethanol (1:1 v/v) as specified by Method #3.  A 3 min vortex (n = 3) 

was compared with a 5 s vortex (n = 3) to evaluate the impact of the duration of vortexing 

after homogenization and before adding hexane.  Three minutes would typically be 

considered a relatively long duration of vortexing.  The “brief” duration of vortexing 
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specified in Method #2 was interpreted to be equivalent to about 5 s.  These homogenates 

were then analyzed according to the remaining steps described by Method #3.  

Effects of reconstitution solvent.  One liver from a 15 wk old male F344 rat was 

used, and nine samples equidistant from the portal vein were taken.  The samples were 

extracted as described by Method #3 (18).  The effects of different reconstitution solvents 

(total volume 2,000 μL) were then compared: 1) MTBE/methanol (1:3 v/v, MTBE was added 

and the tube was then vortexed for 5 s before methanol was added) (n = 3), 2) 100% 

methanol (n = 3), or 3) 100% isopropanol (n = 3).  These solvents were chosen for the 

comparison because they were used for the reconstitution of liver VA extracts in published 

methods (16, 18, 19).  

 

Linear range for HPLC analysis of liver total VA.  

The linear measurement range for HPLC analysis was determined to test if Method 

#1 could be used for the quantification of livers containing a broad range of VA 

concentrations.  To simulate increasing liver VA concentrations, we used increasing amounts 

of liver tissue.  One liver from a 29 wk old male F344 was used, and 14 liver samples 

equidistant from the portal vein were taken.  Increasing weights of liver tissue (0.03 g, 0.05 

g, 0.07 g, 0.09 g, 0.11 g, 0.13 g, and 0.15 g) were extracted in duplicate and their total VA 

concentration was analyzed by using Method #1.  To ensure exhaustive extraction of the VA, 

Method #1 was modified to include three rather than two hexane extractions.  Method #1 was 

used because it had been found to be the optimal method in the previous method comparison 

trial. 
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HPLC analysis 

The molar absorbance coefficients (in ethanol) for ROL and RA were 52 770 and 51 

180, respectively. A single absorbance coefficient, 49 260, was used for RP, RO, and RS 

dissolved in ethanol because these retinyl esters have similar structure and absorbance 

maxima (5, 18, 20).  Because a commercial standard was not available, retinyl linoleate (RL) 

was tentatively identified by comparing its elution order and wavelength of maximum 

absorbance (λmax) with published references (6, 21).  All chromatograms were generated at 

325 nm (5, 18).  Because the recovery of the internal standard (retinyl acetate) was poor (< 

50%) for some methods, external standard curves were prepared from working solutions of 

commercial standards and used to quantify the corresponding retinoids.  The exception was 

that RL was quantified using the RO calibration curve because a RL standard was not 

commercially available and because of their similar retention times and chemical structures.     

For HPLC analysis, mobile phase A consisted of methanol/water (96.5:3.5 v/v) 

containing 1 g/L ammonium acetate and mobile phase B consisted of methanol/MTBE/water 

(40:58:2 v/v/v).  The following gradient was used: 0-15 min, 0% to 45% mobile phase B; 15-

35 min, linear gradient to 55% mobile phase B; 35-45 min, linear gradient to 85% mobile 

phase B; 45-65 min, linear gradient to 100% mobile phase B.  The flow rate was 1.0 mL/min.  

Chromatograms were monitored at 325 nm for the analysis of ROL and retinyl esters.   
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Data analyses 

All data were analyzed using SAS software (version 9.4; SAS Institute).  Results are 

presented as means ± SD.  The liver total VA concentration (in μg retinol equivalents) 

reflects retinol and retinyl esters.  The recovery of the internal standard was defined as the 

ratio of the peak area of the injected RA internal standard that had been added to the liver 

sample to the peak area of the same amount of RA standard directly injected into the HPLC 

system.  The effects of different durations of vortexing before adding hexane were compared 

by using a Student’s unpaired t-test.  A simple linear regression model was used to evaluate 

the relationship between the amount of liver tissue extracted and the quantified liver total VA 

concentration.  A test of lack of fit was performed to determine the adequacy of using this 

model.  Outcomes of interest in the method comparison trial and the other extraction step 

comparison trials were analyzed by one-way analysis of variance (ANOVA) with Tukey’s 

adjustment followed by independent t-tests when there were significant differences among 

groups.  For the comparison of published methods and the comparison of different 

homogenization media, a block effect (the livers from different rats) was included as a fixed 

effect.  A P value < 0.05 was considered significant.  

 

Results and Discussion 

Method comparison 

The hepatic total VA (retinol plus retinyl esters expressed as retinol equivalents) 

concentrations analyzed by Method # 1 (423 ± 72.9 nmol retinol equivalents/g) were 

substantially higher than those analyzed by Method # 2 (36.8 ± 5.35 nmol retinol 

equivalents/g),  Method #3 (347 ± 26.6 nmol retinol equivalents/g) and Method # 4 (288 ± 

49.1 nmol retinol equivalents/g) (P < 0.0001) (Figure 2).  The effect of blocking by the 
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livers from different rats was significant (P < 0.05).  Similar retinyl ester profiles (liver 

concentrations of RP > RS > RO > RL) were detected in the samples that were analyzed by 

all four methods (Table 1).  As expected, the major form of VA identified in the rat livers 

was RP for all four methods (22, 23).  Method #3 was the most efficient method for 

extracting ROL (P < 0.0001).  Method #2 was more efficient in extracting ROL than retinyl 

esters.  ROL accounted for 11% of the total VA in the samples extracted by Method #2.  In 

contrast, only 1-3% of total VA was quantified as ROL for the liver samples extracted by the 

other three methods.  

Hepatic total VA concentrations analyzed by Method #2 (36.8 ± 5.35 nmol retinol 

equivalents/g) were substantially lower than those analyzed by the other three methods 

(Figure 2).  The corresponding recoveries of the retinyl acetate internal standard were also 

lowest in the samples analyzed by Method #2 (47.8 ± 4.03%), compared with those analyzed 

by Method #1 (90.5 ± 1.03%), Method #3 (81.1 ± 1.21%), and Method #4 (96.5 ± 1.89%) (P 

< 0.0001) (Table 1).  The low extraction efficiency of Method #2 may be attributable to one 

or more of the following key steps within the extraction procedures.  First, liver samples 

were homogenized in an aqueous medium (PBS), whereas liver samples were homogenized 

in ethanol-containing media for Methods #1 and #3.  Second, only a “brief” vortex (which 

we interpreted as a 5 s vortex) was conducted after adding ethanol, compared with e.g., a 1 h 

incubation after adding ethanol in Method #1.  Third, unlike the other methods, Method #2 

included a water backwash before hexane extraction, which might result in partitioning of the 

retinoids between the aqueous and organic phases.  Moreover, after addition of hexane, only 

a 1 min vortex was applied in Method #2.  In comparison, in Method #3, samples were 

shaken for 15 min after the addition of hexane. Also, compared with other methods that 
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contain 2-3 hexane extractions, Method #2 only extracts the sample once with hexane.  These 

factors were then individually investigated to determine their effects on the VA extraction 

efficiency. 

 

Evaluating extraction protocol steps 

Homogenization media.  Liver samples are typically homogenized in aqueous 

solution (PBS or saline), alcohol (ethanol or isopropanol), or a mixture of both before 

extracting VA into hexane (24).  There are few reports that evaluate the effects of the 

homogenization medium on the efficiency of extracting VA.  As shown in Figure 3, the 

difference in VA recovery when comparing different homogenization media was significant 

(P < 0.005).  The blocking effect due to the livers from different rats was significant (P < 

0.01).  To isolate the effects of the different homogenization media, ethanol was immediately 

added after liver samples were homogenized in 100% PBS buffer.  PBS buffer was also 

immediately added after the liver samples were homogenized in 100% ethanol.  All of the 

liver samples therefore ultimately contained 1:1 PBS/ethanol before the addition of hexane.  

Although the difference was not statistically significant, Method #1, in which livers are 

homogenized in 100% ethanol, resulted in higher hepatic VA extraction efficiency than the 

three variations of Method #3.  This might be because the modifications of Method #3 each 

added water during or after liver homogenization, which could interfere with the subsequent 

transfer of the retinoids to the hexane phase (25). When comparing the three modifications of 

Method #3, homogenizing liver in 100% PBS resulted in significantly lower extracted VA 

even when ethanol was immediately added after homogenization (Figure 3).  Three potential 

hypotheses might contribute to this phenomenon.  First, homogenizing liver in PBS led to 



www.manaraa.com

97 

 

different amorphous liver homogenates (Figure 4).  The top clear liquid phase was an 

organic phase (hexane), and the lower light yellow liquid phase was an aqueous phase 

(ethanol and PBS buffer).  After hexane extraction and centrifugation, liver samples 

homogenized in 100% ethanol with PBS added after homogenization or in a mixture of 

PBS/ethanol (1:1) became a condensed dehydrated pellet.  In contrast, liver samples 

homogenized in 100% PBS became a liquid layer of fluffy homogenate paste even when 

ethanol was immediately added after homogenization.  This phenomenon suggested that 

ethanol is needed in the homogenization media to extract retinoids from liver tissues and then 

partition them directly to hexane.  Homogenizing liver in 100% PBS might facilitate liver 

tissue binding with water molecules and therefore interfere with the above partitioning 

process.  As a result, even if ethanol and hexane were added afterward, the retinyl esters 

could not be released from the liver tissue easily and extracted by the organic solvents 

efficiently.  Therefore, homogenizing liver in media with adequate ethanol facilitated the 

retinyl esters and other fat-soluble molecules to be directly taken up by hexane, and a stiff 

dehydrated pellet was left as the extraction residue.  

Second, ethanol increases membrane fluidity by interfering with the packing of 

molecules in the phospholipid bilayer of the cell membrane (26).  Ethanol was therefore 

shown to be able to disrupt the physical structure of cell membranes.  Moreover, the use of 

solvent mixtures containing alcohol could disrupt the hydrogen bonding and ionic forces 

between retinoids and associated proteins (27).  In addition to the mechanical force provided 

by the homogenizer, ethanol likely played an additive role by disrupting the biomembranes 

of liver cells and their organelles, and thereby releasing retinoids that could then be extracted 

by hexane.  
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Finally, in the livers of rats that have low vitamin A status (i.e., retinol-depleted rats), 

retinyl palmitate hydrolase (RPH) accumulates (28).  During homogenization, released RPH 

might catalyze the hydrolysis of retinyl esters and decrease the accuracy of retinyl ester 

quantification.  This enzymatic hydrolysis reaction could be terminated by adding ethanol at 

a final concentration of at least 50% to denature the endogenous RPH (28).  After the liver 

tissue is homogenized, the possibility of enzymatic degradation of lipids is greatly increased.  

Therefore, it is recommended that homogenates are immediately inactivated by the addition 

of alcohol (29).  Our results show no difference between homogenization in 50% or 100% 

ethanol (Figure 3).  Therefore, homogenizing liver in at least 50% ethanol is recommended.  

Because ROL is the product of the hydrolysis of retinyl esters, this phenomenon might also 

explain the higher ROL level that was detected when liver was homogenized in 100% PBS 

(Table 2).  

In the homogenization media comparison trial, Method #1 was not superior to 

Method #3 (Figure 3) in extracting hepatic VA.  This result was different from what we 

observed in the method comparison trial (significantly lower VA extraction efficiency for 

Method #3) (Figure 2).  This may be because different vortex times were used in Method #3 

in the homogenization media comparison trial (3 min vortex before adding hexane) versus 

the method comparison trial (5 s vortex before adding hexane).  The vortex duration was 

increased in the homogenization media comparison trial in order to isolate the effects of the 

homogenization media versus the effects of the duration of vortexing.  Method #1 has a 1 h 

ethanol incubation step and it is shown here to be the most efficient method for hepatic VA 

extraction.     
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Vortex duration after adding ethanol.  Injecting residual proteins into the HPLC 

system leads to high system back-pressures and column deterioration (10).  Therefore, when 

homogenizing liver in aqueous buffer, ethanol is still added after homogenization as a water 

miscible organic solvent to precipitate proteins and liberate retinoids from binding proteins 

(30, 31).  As mentioned before, in some protocols, liver was homogenized in media 

containing ethanol.  In both cases, the extent of sample exposure to ethanol, i.e., the vortex 

duration before adding hexane could be important.  However, this vortex step was either 

omitted (32), brief (17) or of unspecified duration (18) in many VA extraction protocols.  

Our results indicate that a longer duration of vortexing (3 min vortex) before adding hexane 

provides significantly higher VA extraction efficiency than a brief duration of vortexing (5 s 

vortex) before adding hexane (P < 0.05) (Figure 5).  To the best of our knowledge, few 

published reports have addressed the importance of this step. 

Reconstitution solvent.  After evaporating the extracting solvent, it is necessary to 

reconstitute samples in a small volume of suitable solvent before injecting into the HPLC 

system (33).  The reconstitution solvent must be able to dissolve all components of the 

extract and be compatible with the HPLC mobile phase system.  For HPLC methods using a 

C30 analytical column, although the composition of the mobile phases is often similar (a 

combination of methanol, MTBE, and water), various reconstitution solvents such as 

MTBE/methanol mixtures (19, 34), MTBE (8), or methanol/dichloromethane mixtures (6, 9) 

are used with little elucidation.  For HPLC methods using a C18 column, methanol (16, 17), 

isopropanol (18), methanol/isopropanol mixtures (35), and chloroform/methanol mixtures 

(36) were reported as reconstitution solvents for VA analysis.  To find an optimal 

reconstitution solvent for our liver extracts and the C30 HPLC column system, we compared 
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methanol, MTBE/methanol mixture, and isopropanol as reconstitution solvents.  As shown in 

Figure 6, 100% methanol provided the best chromatographic resolution for the more polar 

retinoids, ROL and retinyl acetate (internal standard).  However, using 100% methanol as the 

reconstitution solvent resulted in lower detected total VA concentration (P < 0.01) (Figure 

7), suggesting that pure methanol is a poor solvent for dissolving nonpolar retinyl esters.  

100% isopropanol was theoretically miscible with the components of the mobile phase, 

methanol, MTBE, and water (37), and provided adequate solubility for retinoids (Figure 7).  

However, the resulting chromatographic resolution for the early-eluting peaks (polar 

retinoids) (Figure 6) was below the acceptable standard for our laboratory.  MTBE/methanol 

(1:3 v/v, MTBE was added and the tube was then vortexed for 5 s before methanol was 

added) was found to provide both acceptable chromatographic resolution for polar retinoids 

and higher total VA concentrations similar to those measured when reconstituting with 

isopropanol (Figure 6, 7).  As a result, the MTBE/methanol mixture (1:3) was chosen as the 

reconstitution solvent for our trials and is recommended as the optimal reconstitution solvent 

for VA analysis using the HPLC C30 column system. 

Other factors that showed no impacts.  The water backwash step in Method #2 was 

considered as a potential factor that might account for the low VA extraction efficiency (29).  

The brief duration of vortexing during hexane extraction in this method might also influence 

the partitioning of retinoids from the aqueous phase.  However, we did not find significant 

differences in VA extraction efficiency when we added a water backwash step to Method #1 

(400 ± 38.1 nmol/g versus 399 ± 37.6 nmol/g).  Similarly, we did not find a significant 

difference in liver VA concentration when we compared 3 min of vortexing (4711 ± 102 

nmol/g) versus the specified 15 min of shaking (4671 ± 26.3 nmol/g) during hexane 
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extraction in Method #3.  Lucas et al. (38) have shown the importance of using hot alcohol 

for exhaustive lipid extraction.  However, based on Method #1, we did not find a significant 

difference between a 5-min hot (boiling) ethanol incubation (192 ± 40.8 nmol/g) and a 1-h 

room temperature ethanol incubation (186 ± 49.0 nmol/g).  Although repeated hexane 

extraction was recommended (10), no difference was found between one time (390 ± 47.1 

nmol/g) and two times (400 ± 38.1 nmol/g) hexane extractions in Method #1.  

 

Measurement range for retinyl palmitate and total VA.  

Our results indicate that Method #1 was the best method for extracting rat liver VA 

because it had the highest extraction efficiency among the four methods (Figure 2).  The 

liver VA content in animals’ organs is highly dependent upon their dietary VA content (39).  

To determine if Method #1 could be used for VA quantification in livers containing a broad 

range of VA contents (e.g., animals of different ages, animals fed diets containing different 

levels of VA, and/or animals from different species), the liver from a male F344 rat was used 

to determine the linear quantification range of Method #1.  For this experiment, to ensure 

optimal extraction efficiency, we modified Method #1 to include three hexane extractions 

rather than two as specified in the published method.  The VA content in this liver was 

expected to be high because this rat was of advanced age (29 weeks) and had a high dietary 

VA intake (approximately 68 μg retinol activity equivalents per day).  Increasing amounts of 

liver tissue were extracted (range: 0.03 g to 0.15 g).  In this study, regression analysis showed 

a nearly perfect linear relationship between the measured liver total VA content and the 

weight of liver tissue that was extracted (R-square = 0.99) (Figure 8).  The slope 

corresponding to the linear model was significantly different from zero (P < 0.0001).  A 
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linear regression model is adequate because no lack of fit was detected (P > 0.05).  

Therefore, Method #1 modified to include an additional hexane extraction was found to be 

accurate for analyzing rodent livers with widely varying concentrations of VA.  

 

Conclusions 

The use of an efficient extraction method when quantifying VA in liver tissue is 

crucial in the accurate determination of VA status in animal models.  Among four compared 

methods, Method #1 was found to have the highest extraction efficiency in terms of total VA.  

This method was shown to have a wide range of linearity and thus would be suitable for 

analyzing liver samples with varying concentrations of VA.  Of the many factors evaluated 

within the hepatic VA extraction protocol, an adequate concentration of ethanol (at least 

50%) in the homogenization media is necessary for exhaustive extraction.  Ethanol is needed 

in the homogenization media to extract retinoids from liver tissues and then partition them 

directly to hexane.  Homogenizing liver in 100% PBS might facilitate liver tissue binding 

with water molecules and therefore interfere with the above partitioning process.  The initial 

extraction of VA from the tissue into ethanol is a critical step that needs to be facilitated by 

an adequate duration of vortexing.  Finally, the selection of the reconstitution solvent is 

important for optimal chromatography and therefore for accurate quantification. 
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Table 1.  Comparison of rat hepatic VA concentrations analyzed using different published 

extraction protocols1 

Analyte 

Extraction methods 

Method #1 Method #2 Method #3 Method #4 

 nmol/g liver2 

Retinol 5.75 ± 0.98a 4.10 ± 0.66b 9.48 ± 0.75c 3.65 ± 0.62b 

Retinyl linoleate 8.83 ± 1.03a 0.50 ± 0.16b 6.97 ± 0.54c 5.66 ± 1.00d 

Retinyl oleate 15.1 ± 2.25a 0.79 ± 0.08b 12.4 ± 1.17c 10.1 ± 1.71c 

Retinyl palmitate 338 ± 57.0a 26.1 ± 3.71b 272 ± 17.0c 227 ± 36.5c 

Retinyl stearate 55.2 ± 13.3a 5.31 ± 1.30b 46.1 ± 8.18ac 42.3 ± 10.0c 

Total retinyl esters 417 ± 72.1a 32.7 ± 5.10b 338 ± 25.9c 285 ± 48.7c 

Total VA3 423 ± 72.9a 36.8 ± 5.35b 347 ± 26.6c 288 ± 49.1c 

IS recovery (%)4 90.5 ± 1.03a 47.8 ± 4.03b 81.1 ± 1.21c 96.5 ± 1.89d 

1 All values are means ± SD; n = 4. 

2 Mean values within the same row with different superscript letters are significantly different 

by one-way ANOVA, P < 0.05.  

3 The hepatic total VA concentration was equivalent to retinol plus retinyl esters. 

4 Retinyl acetate in ethanol was added at the beginning of the extraction as an internal 

standard.  For Methods #1 and #3, internal standards were added before homogenization as 

specified in publications.  For Methods #2 and #4, internal standard was added after 

homogenization as specified in the publications. 
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Table 2.  Comparison of rat liver VA concentrations analyzed by methods adding different 

solvents during liver homogenization1 

Analyte 

Extraction methods2 

Method #1 Method #3 (P/E) Method #3 (P) Method #3 (E) 

 nmol/g liver3 

Retinol 47.4 ± 6.54a 60.3 ± 13.4ab 68.0 ± 9.91b 49.2 ± 9.87a 

Retinyl linoleate 54.9 ± 12.3a 43.6 ± 12.2ab 33.0 ± 7.14b 44.24 ± 11.7ab 

Retinyl oleate 55.6 ± 10.1a 45.7 ± 10.9a 34.2 ± 5.16b 45.9 ± 8.22a 

Retinyl palmitate 2088 ± 358a 1727 ± 428b 1317 ± 211c 1837 ± 325ab 

Retinyl stearate 225 ± 33.3a 190 ± 42.7ab 153 ± 19.7b 204 ± 31.7a 

Total retinyl esters 2424 ± 413a 2005 ± 494b 1537 ± 242c 2131 ± 376ab 

Total VA4 2471 ± 417a 2066 ± 504a 1605 ± 244b 2180 ± 384a 

IS recovery (%)5 86.9 ± 1.15ab 89.8 ± 1.71a 83.9 ± 1.52b 87.4 ± 2.85ab 

1 All values are means ± SDs; n = 4. 

2 To ensure exhaustive extraction, Method #1: Method #1 was modified to include an 

additional hexane extraction for a total of three hexane extractions. Method #3 (P/E): Method 

#3 homogenized liver samples in PBS/ethanol mixture (1:1, vol); Method #3 (P): Method #3 

was modified to homogenize liver samples in 100% PBS buffer; Method #3 (E) = Method #3 

was modified to homogenize liver samples in 100% ethanol. 

3 Mean values within the same row with different superscript letters are significantly different 

by one-way ANOVA, P < 0.05.  

4 The hepatic total VA concentration was accountable to retinol plus retinyl esters. 
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5 For Method #1, retinyl acetate in ethanol was added at the beginning of the extraction as an 

internal standard.  For modified Method #3s, retinyl acetate in ethanol was added after 

homogenization to exclude the effect of additional ethanol on homogenization medium.   
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Figure 1. Flow chart of the common steps used in liver VA determination. Summarized from 

(10). 

 

  

SAMPLE 
(liver) 

PROTEIN PRECIPITATION 
(water miscible alcohol) 

QUANTITATIVE ANALYSIS 
(HPLC) 

VORTEX 
(varying durations) 

HOMOGENIZATION 
(in organic solvent and/or aqueous buffer) 

LIQUID EXTRACTION 
(water immiscible organic solvent) 

 

EVAPORATION and RECONSTITUTION 
(reconstitution solvent that both solubilizes analytes and is 

compatible with the HPLC mobile phase system) 
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Figure 2. Comparison of rat hepatic total VA (retinol plus retinyl esters) concentrations 

analyzed using the different published extraction protocols.  All values are means ± SD; n = 

4.  Bars having different letters were different by one-way ANOVA, P < 0.05. 

 

  

0

100

200

300

400

500

Method #1 Method #2 Method #3 Method #4

H
e

p
a

ti
c
 t
o

ta
l 
V

A
 (

n
m

o
l/
g

 li
v
e

r)

Extraction methods

b

a

c
c



www.manaraa.com

113 

 

 

 

Figure 3. Comparison of rat hepatic total VA (retinol plus retinyl esters) concentrations 

analyzed by the methods using different homogenization medium.  To ensure exhaustive 

extraction, Method #1 was modified to include an additional hexane extraction for a total of 

three hexane extractions.  Method #3 (P/E): Method #3 homogenized liver samples in 

PBS/ethanol mixture (1:1, vol); Method #3 (P): Method #3 was modified to homogenize liver 

samples in 100% PBS buffer; Method #3 (E) = Method #3 was modified to homogenize liver 

samples in 100% ethanol.  All values are means ± SD; n = 4.  Bars having different letters 

were different by one-way ANOVA, P < 0.05.   
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Figure 4.  Comparison of rat liver samples homogenized in different homogenization 

medium.  Rat liver samples were homogenized in PBS/ethanol mixture (1:1, vol) (A), 100% 

PBS buffer (B), 100% ethanol (C).  Ethanol was immediately added after the liver samples 

were homogenized in 100% PBS buffer (B).  PBS buffer was immediately added after the 

liver samples were homogenized in 100% ethanol (C).  Hexane (the clear upper layers) was 

subsequently added to all samples.  
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Figure 5. Comparison of rat total hepatic VA (retinol plus retinyl esters) concentrations 

analyzed using methods with different durations of vortexing before adding hexane.  A 5 s 

vortex (n = 3) was compared with a 3 min vortex (n = 3) to evaluate the impact of the 

duration of vortexing after homogenization and before adding hexane.  All values are means 

± SD; n = 3.  Bars having different letters were different by Student’s unpaired t-test, P < 

0.05. 
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Figure 6. Chromatograms of rat hepatic VA analyzed by different reconstitution methods.  

MTBE/methanol mixture (1:3 v/v, MTBE was added and the tube was then vortexed for 5 s 

before methanol was added) (A), 100% methanol (B), and 100% isopropanol (C) were used 

as reconstitution solvents.  HPLC analysis was performed at 325 nm using a C30 column.  
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Figure 7. Comparison of rat hepatic total VA (retinol plus retinyl esters) concentrations 

analyzed by different reconstitution methods.  MTBE/methanol: liver extract reconstituted in 

MTBE/methanol (1:3 v/v, MTBE was added and the tube was then vortexed for 5 s before 

methanol was added) mixture before injected into HPLC; Methanol: liver extract 

reconstituted in 100% methanol before injected into HPLC; Isopropanol: liver extract 

reconstituted in 100% isopropanol before injected into HPLC.  All values are means ± SD; n 

= 3. Bars having different letters were different by one-way ANOVA, P < 0.05. 
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Figure 8. Linear relationship between analyzed hepatic total VA (retinol plus retinyl esters) 

and extracted liver sample weight. 
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CHAPTER 5 

GENERAL CONCLUSIONS  

 

The studies presented in this dissertation have completed the accurate quantification 

of the bioefficacy of the provitamin A carotenoids in β-carotene-biofortified sorghum using a 

Mongolian gerbil model.  This study is the first in vivo study of transgenic β-carotene-

biofortified sorghum.  As a result, liver VA stores in the baseline, biofortified, and β-

carotene-dosed groups were not different; liver VA stores in the oil vehicle-dosed control 

group were lower (P < 0.03).  As expected, liver VA stores were highest in the VA-dosed 

group (P < 0.0001).  Serum retinol concentrations did not differ among the treatment groups.  

The calculated VA equivalence for the provitamin A carotenoids in the biofortified sorghum 

(4.5 μg β-carotene to 1 μg retinol) was similar to that of the β-carotene dose (3.8 μg to 1 μg 

retinol).  These results demonstrate that β-carotene and other provitamin A carotenoids in the 

biofortified sorghum 1) effectively restored liver VA stores in a VA-depleted animal model; 

and 2) had efficacy similar to that of a supplemental β-carotene dose in maintaining liver VA 

stores.   

Assuming that cooking retention rates for provitamin A carotenoids were 77% and 

dry matter content was 22.9%, as reported for traditional African sorghum porridge (1, 2), a 

200 g serving of porridge contains 49 g biofortified sorghum flour and 370 µg β-carotene 

equivalents.  If our vitamin A equivalence value measured in gerbils may be extrapolated to 

humans, one serving of biofortified sorghum porridge would be expected to provide 82 µg 

retinol activity equivalents (RAEs) and 27% of the estimated average requirement (EAR) for 

VA (300 µg RAE/d) for children ages 1-3 years (3).  
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  Accurate identification and quantification of the provitamin A carotenoids in the 

biofortified sorghum is an essential step in an in vivo bioefficacy study.  Even a trivial 

amount of provitamin A carotenoids in the sorghum diet could accumulate and make an 

impact on whole-body stores of VA over a 6-wk feeding period.  Overlooking or mistakenly 

quantifying provitamin VA carotenoids will overestimate or underestimate the final VA 

equivalence value.  Accurate quantification of hepatic VA concentration is fundamental for 

the determination of vitamin A status in animal models.  There are many published hepatic 

VA extraction methods, and their details vary considerably from each other.  As a result, the 

selection of hepatic VA extraction method can be very challenging.  Several analytical works 

were therefore conducted to ensure the optimal procedures can be used for our project. 

  Results from our analytical works can be summarized as follows: 

1) In the β-carotene-biofortified sorghum, one zeinoxanthin (non-provitamin A 

carotenoid) and two cis-isomers of β-zeacarotene (provitamin A carotenoid) could be 

identified and quantified by LC-(APCI)MS and HPLC-PDA. 

2) To add internal standard at the beginning of the extraction protocol as a “true” 

internal standard, we conducted a room temperature saponification after the initial incubation 

of the milled seed with ethanol at 85°C in a water bath.  Using this modified protocol, the 

internal standard recovery was 94% ± 4% (means ± SD) and the inter-assay coefficient of 

variation was only 4%. 

3) Using a HPLC C30 column, a HPLC gradient method was developed to 

simultaneously separate, identify, and quantify more than 15 retinoids and carotenoids 

(lutein, zeaxanthin, zeinoxanthin, phytoene, phytofluene, α-carotene, β-carotene, γ-carotene, 
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β-zeacarotene, retinol, retinyl acetate, retinyl linoleate, retinyl oleate, retinyl palmitate, 

retinyl stearate). 

4) Method #1 (J Lipid Res 2014;55:1077-86) resulted in higher hepatic total vitamin A 

concentrations (423 ± 72.9 nmol/g) than Method #2 (Methods Mol Biol 2010;652:263-75) 

(36.8 ± 5.35 nmol/g), Method #3 (Anal Methods 2010;2:1320-1332) (347 ± 26.6 nmol/g), 

and Method #4 (Food Chem 2014;159:477-85) (288 ± 49.1 nmol/g) (P < 0.0001).   

5) Of the many factors evaluated within the hepatic VA extraction protocol, an adequate 

concentration of ethanol (at least 50%) in the homogenization media is necessary for 

exhaustive extraction.  Ethanol is needed in the homogenization media to extract retinoids 

from liver tissues and then partition them directly to hexane.  Homogenizing liver in 100% 

PBS might facilitate liver tissue binding with water molecules and therefore interfere with 

the above partitioning process.  The initial extraction of VA from the tissue into ethanol is a 

critical step that needs to be facilitated by an adequate duration of vortexing.  In addition, the 

selection of the reconstitution solvent is important for optimal chromatography and therefore 

for accurate quantification. 

In conclusion, by using improved analytical methods, we showed that β-carotene and 

the other provitamin A carotenoids in the biofortified sorghum: 1) effectively restored liver 

VA stores in a VA-depleted animal model; 2) had efficacy similar to that of a supplemental β-

carotene dose in maintaining liver VA stores.  Accurate measurement of hepatic VA and 

provitamin A value of β-carotene-biofortified sorghum in a gerbil study provide sound 

evidence of bioefficacy in improving VA status and a preliminary basis for future clinical 

human feeding studies.  The mechanism of ethanol’s role in hepatic VA extraction also needs 

further elucidations.   
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